Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 23, no. 2 | art. no. e94, 2023
Tytuł artykułu

Machine learning-based seismic response and performance assessment of reinforced concrete buildings

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Complexity and unpredictability nature of earthquakes makes them unique external loads that there is no unique formula used for the prediction of seismic responses. Hence, this research aims to implement the most well-known Machine Learning (ML) methods in Python software to propose a prediction model for seismic response and performance assessment of Reinforced Concrete Moment-Resisting Frames (RC MRFs). To prepare 92,400 data points of training dataset for developing data-driven techniques, Incremental Dynamic Analyses (IDAs) were performed considering 165 RC MRFs with two-, to twelve-Story elevations having the bay lengths of 5.0 m, 6.1 m, and 7.6 m assuming near-fault seismic excitations. Then, important structural features were considered in datasets to train and test the ML-based prediction models, which were improved with innovative techniques. The results show that improved algorithms have higher R2 values for estimating the Maximum Interstory Drift Ratio (IDRmax), and two improved algorithms of artificial neural networks and extreme gradient boosting can estimate the Median of IDA curves (M-IDAs) of RC MRFs, which can be used to estimate the seismic limit-state capacity and performance assessment of existing or newly constructed RC buildings. To validate the generality and accuracy of the proposed ML-based prediction model, a five-Story RC building with different input features was used, and the results are promising. Therefore, graphical user interface is introduced as user-friendly tool to help researchers in estimating the seismic limit-state capacity of RC buildings, while reducing the computational cost and analytical efforts.
Wydawca

Rocznik
Strony
art. no. e94, 2023
Opis fizyczny
Bibliogr. 63 poz., rys., tab., wykr.
Twórcy
autor
  • Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Ul. Narutowicza 11/12, 80‑233 Gdansk, Poland, farzin.kazemi@pg.edu.pl
  • Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Ul. Narutowicza 11/12, 80‑233 Gdansk, Poland, neda.asgarkhani@pg.edu.pl
  • Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Ul. Narutowicza 11/12, 80‑233 Gdansk, Poland, jankowr@pg.edu.pl
Bibliografia
  • 1. Kaya Y, Safak E. Real-time analysis and interpretation of continuous data from structural health monitoring (SHM) systems. Bull Earthq Eng. 2015;13(3):917-34.
  • 2. Ngeljaratan L, Moustafa MA. Structural health monitoring and seismic response assessment of bridge structures using target-tracking digital image correlation. Eng Struct. 2020;213: 110551.
  • 3. Manguri A, Saeed N, Kazemi F, Szczepanski M, Jankowski R. Optimum number of actuators to minimize the cross-sectional area of prestressable cable and truss structures. Structures. 2023;47:2501-14.
  • 4. Kazemi F, Jankowski R. Enhancing seismic performance of rigid and semi-rigid connections equipped with SMA bolts incorporating nonlinear soil-structure interaction. Eng Struct. 2023;274: 114896.
  • 5. Kazemi F, Asgarkhani N, Jankowski R. Probabilistic assessment of SMRFs with infill masonry walls incorporating nonlinear soil-structure interaction. Bull Earthq Eng. 2023;21:1-32.
  • 6. Kazemi F, Mohebi B, Yakhchalian M. Evaluation the P-delta effect on collapse capacity of adjacent structures subjected to far-field ground motions. Civil Eng J. 2018;4(5):1066. https://doi.org/10.28991/cej-0309156.
  • 7. Mohebi B, Kazemi F, Yakhchalian M. Investigating the P-Delta effects on the seismic collapse capacity of adjacent structures. In: 16th European conference on earthquake engineering (16ECEE), 18-21, June, Thessaloniki, Greece. 2018.
  • 8. Kazemi F, Mohebi B, Yakhchalian M. Enhancing the seismic performance of adjacent pounding structures using viscous dampers. In: The 16th European conference on earthquake engineering (16ECEE), 18-21, June, Thessaloniki, Greece. 2018.
  • 9. Kazemi F, Mohebi B, Yakhchalian M. Predicting the seismic collapse capacity of adjacent structures prone to pounding. Can J Civ Eng. 2020;47(6):663-77.
  • 10. Kazemi F, Mohebi B, Jankowski R. Predicting the seismic collapse capacity of adjacent SMRFs retrofitted with fluid viscous dampers in pounding condition. Mech Syst Signal Process. 2021;161: 107939.
  • 11. Asgarkhani N, Kazemi F, Jankowski R. Optimal retrofit strategy using viscous dampers between adjacent RC and SMRFs prone to earthquake-induced pounding. Arch Civ Mech Eng. 2023;23(1):1-26.
  • 12. Kabir MAB, Hasan AS, Billah AM. Failure mode identification of column base plate connection using data-driven machine learning techniques. Eng Struct. 2021;240: 112389.
  • 13. Mangalathu S, Jeon JS. Stripe-based fragility analysis of multi-span concrete bridge classes using machine learning techniques. Earthq Eng Struct Dynam. 2019;48(11):1238-55.
  • 14. Nguyen HD, LaFave JM, Lee YJ, Shin M. Rapid seismic damage-state assessment of steel moment frames using machine learning. Eng Struct. 2022;252: 113737.
  • 15. Wu ZN, Han XL, He A, Cai YF, Ji J. Machine learning-based adaptive degradation model for RC beams. Eng Struct. 2022;253: 113817.
  • 16. Hastie T, Tibshirani R, Friedman J. Overview of supervised learning. In: The elements of statistical learning. New York: Springer; 2009. p. 9-41.
  • 17. Yazdanpanah O, Dolatshahi KM, Moammer O. Rapid seismic fragility curves assessment of eccentrically braced frames through an output-only nonmodel-based procedure and machine learning techniques. Eng Struct. 2023;278: 115290.
  • 18. Kazemi F, Asgarkhani N, Jankowski R. Predicting seismic response of SMRFs founded on different soil types using machine learning techniques. Eng Struct. 2023;274: 114953.
  • 19. Huang CS, Hung SL, Wen CM, Tu TT. A neural network approach for structural identification and diagnosis of a building from seismic response data. Earthq Eng Struct Dynam. 2003;32(2):187-206.
  • 20. Yinfeng D, Yingmin L, Ming L, Mingkui X. Nonlinear structural response prediction based on support vector machines. J Sound Vib. 2008;311(3-5):886-97.
  • 21. Lagaros ND, Papadrakakis M. Neural network based prediction schemes of the non-linear seismic response of 3D buildings. Adv Eng Softw. 2012;44(1):92-115.
  • 22. De Lautour OR, Omenzetter P. Damage classification and estimation in experimental structures using time series analysis and pattern recognition. Mech Syst Signal Process. 2010;24(5):1556-69.
  • 23. Worden K, Green PL. A machine learning approach to nonlinear modal analysis. Mech Syst Signal Process. 2017;84:34-53.
  • 24. Kiani J, Camp C, Pezeshk S. On the application of machine learning techniques to derive seismic fragility curves. Comput Struct. 2019;218:108-22.
  • 25. Nguyen NV, Nguyen HD, Dao ND. Machine learning models for predicting maximum displacement of triple pendulum isolation systems. Structures. 2022;36:404-15.
  • 26. Oh BK, Glisic B, Park SW, Park HS. Neural network-based seismic response prediction model for building structures using artificial earthquakes. J Sound Vib. 2020;468: 115109.
  • 27. Luo H, Paal SG. Artificial intelligence-enhanced seismic response prediction of reinforced concrete frames. Adv Eng Inform. 2022;52: 101568.
  • 28. Gholizadeh R, Amiri GG, Mohebi B. An alternative approach to a harmony search algorithm for a construction site layout problem. Can J Civ Eng. 2010;37(12):1560-71.
  • 29. Todorov B, Billah AM. Machine learning driven seismic performance limit state identification for performance-based seismic design of bridge piers. Eng Struct. 2022;255: 113919.
  • 30. Dehestani A, Kazemi F, Abdi R, Nitka M. Prediction of fracture toughness in fibre-reinforced concrete, mortar, and rocks using various machine learning techniques. Eng Fract Mech. 2022;276: 108914.
  • 31. Adibimanesh B, Polesek-Karczewska S, Bagherzadeh F, Szczuko P, Shafighfard T. Energy consumption optimization in wastewater treatment plants: machine learning for monitoring incineration of sewage sludge. Sustain Energy Technol Assess. 2023;56: 103040.
  • 32. Shafighfard T, Bagherzadeh F, Rizi RA, Yoo DY. Data-driven compressive strength prediction of steel fiber reinforced concrete (SFRC) subjected to elevated temperatures using stacked machine learning algorithms. J Market Res. 2022;21:3777-94.
  • 33. Kazemi F, Asgarkhani N, Jankowski R. Machine learning-based seismic fragility and seismic vulnerability assessment of reinforced concrete structures. Soil Dyn Earthq Eng. 2023;166: 107761.
  • 34. Kazemi F, Jankowski R. Machine learning-based prediction of seismic limit-state capacity of steel moment-resisting frames considering soil-structure interaction. Comput Struct. 2023;274: 106886.
  • 35. Pal M. Random forest classifier for remote sensing classification. Int J Remote Sens. 2005;26(1):217-22.
  • 36. Geurts P, Ernst D, Wehenkel L. Extremely randomized trees. Mach Learn. 2006;63(1):3-42.
  • 37. Louppe G, Geurts P. Ensembles on random patches. In: Joint European conference on machine learning and knowledge discovery in databases. Berlin: Springer; 2012. p. 346-61.
  • 38. Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci. 1997;55(1):119-39.
  • 39. Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). Ann Stat. 2000;28(2):337-407.
  • 40. Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat. 2001;29:1189-232.
  • 41. Cortes C, Vapnik V. Support vector machine. Mach Learn. 1995;20(3):273-97.
  • 42. Chang CC, Lin CJ. Training v-support vector regression: theory and algorithms. Neural Comput. 2002;14(8):1959-77.
  • 43. Drucker H, Burges CJ, Kaufman L, Smola A, Vapnik V. Support vector regression machines. Adv Neural Inf Process Syst. 1996;9.
  • 44. Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In Ijcai. 1995;14(2):1137-45.
  • 45. McCullagh P, Nelder JA. Generalized linear models. London: Chapman and Hall; 1989.
  • 46. Wolpert DH. Stacked generalization. Neural Netw. 1992;5(2):241-59.
  • 47. Höskuldsson A. PLS regression methods. J Chemometr. 1988;2(3):211-28.
  • 48. ASCE 7-16. Minimum design loads and associated criteria for buildings and other structures. American Society of Civil Engineers; 2017.
  • 49. United States Geological Survey. https://www.usgs.gov/programs/earthquake-hazards/hazards. Accessed 03 Mar 2022.
  • 50. Haselton CB, Deierlein GG. Assessing seismic collapse safety of modern reinforced concrete frame buildings. PEER Report. 2007;8.
  • 51. Mohebi B, Yazdanpanah O, Kazemi F, Formisano A. Seismic damage diagnosis in adjacent steel and RC MRFs considering pounding effects through improved wavelet-based damage-sensitive feature. J Build Eng. 2021;33: 101847.
  • 52. McKenna F, Fenves GL, Filippou FC, Scott MH. Open system for earthquake engineering simulation (OpenSees). Berkeley, Pacific Earthquake Engineering Research Center, University of California. 2016. http://OpenSees.berkeley.edu. Accessed 21 Oct 2022.
  • 53. Asgarkhani N, Yakhchalian M, Mohebi B. Evaluation of approximate methods for estimating residual drift demands in BRBFs. Eng Struct. 2020;224: 110849.
  • 54. Yakhchalian M, Asgarkhani N, Yakhchalian M. Evaluation of deflection amplification factor for steel buckling restrained braced frames. J Build Eng. 2020;30: 101228.
  • 55. Yakhchalian M, Yakhchalian M, Asgarkhani N. An advanced intensity measure for residual drift assessment of steel BRB frames. Bull Earthq Eng. 2021;19(4):1931-55.
  • 56. Yazdanpanah O, Mohebi B, Kazemi F, Mansouri I, Jankowski R. Development of fragility curves in adjacent steel moment-resisting frames considering pounding effects through improved wavelet-based refined damage-sensitive feature. Mech Syst Signal Process. 2022;173: 109038.
  • 57. Kazemi F, Asgarkhani N, Manguri A, Jankowski R. Investigating an optimal computational strategy to retrofit buildings with implementing viscous dampers. Int Conf Comput Sci ICCS Proc. 2022. https://doi.org/10.1007/978-3-031-08754-7_25.
  • 58. Kazemi F, Jankowski R. Seismic performance evaluation of steel buckling-restrained braced frames including SMA materials. JConstr Steel Res. 2023;201: 107750.
  • 59. Ibarra LF, Medina RA, Krawinkler H. Hysteretic models that incorporate strength and stiffness deterioration. Earthq Eng Struct Dynam. 2005;34(12):1489-511.
  • 60. Altoontash A. Simulation and damage models for performance assessment of reinforced concrete beam-column joints. Dissertation, Department of Civil and Environmental Engineering, Stanford University. 2004.
  • 61. Federal Emergency Management Agency (FEMA P695). Quantification of building seismic performance factors. US Department of Homeland Security, FEMA. 2009.
  • 62. MATLAB/Simulink as a Technical Computing Language. Engineering computations and modeling in MATLAB. 2018.
  • 63. FEMA-356. Prestandard and commentary for the seismic rehabilitation of buildings. Washington, DC: Federal Emergency Management Agency. 2000.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-27d72330-db85-4b4f-98a2-35b39462f3dd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.