Warianty tytułu
Języki publikacji
Abstrakty
Wind energy is a clean valuable source of renewable electricity when used with specific characteristically turbines because of its inexhaustibility as well as abating the use of fossil fuels. However, studies are still needed to design wind turbines with better performance. Therefore, this study aims to analyse the effect of blade length on the shaft rotation of a small-scale HAWT (horizontal axis wind turbine). A small-scale HAWT with the NACA4418 blade length of 1.25, 1.50, and 1.75 m was tested using three different blades (3, 4, and 5 blades) at speeds between 3 and 8 m/s without generating load. The lengths affected the tip speed ratio in this condition, considering various counts. The results showed that the rotor stability of a 1.25 m blade length was better than others at 4–6 m/s, based on the produced TSR value. The CP of the wind turbine also began to change significantly at 5 m/s, with the five-blade system of 1.25 m having the best rotation at medium speeds compared to others at 1.50 and 1.75 m. The correct number of blade lengths is essential for optimal and efficient overall turbine performance.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
272--281
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Syiah Kuala, Indonesia
autor
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Syiah Kuala, Indonesia, ahmadsyuhada@usk.ac.id
autor
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Syiah Kuala, Indonesia, akhyar@usk.ac.id
Bibliografia
- 1. Abdelsalam, A.M., El-Askary, W.A., Kotb, M.A., and Sakr, I.M. 2021. Experimental study on small scale horizontal axis wind turbine of analyticallyoptimized blade with linearized chord twist angle profile, Energy, 216, 119304, doi: 10.1016/j.energy.2020.119304.
- 2. Ahmad, S. and Tahar, R.M. 2014. Selection of renewable energy sources for sustainable development of electricity generation system using analytic hierarchy process: A case of Malaysia. Renewable energy, 63, 458–466. https://doi.org/10.1016/j.renene.2013.10.001
- 3. AirfoilTools.com. 2013. Airfoil NACA 4418.
- 4. Al-Fatlawi, A.W., Al-Baghdadi, M.A., Togan, H., Ahmadi, G., Rahman, S., and Rahim, N.A. 2022. Techno-economic analysis of wind turbines powering rural of Malaysia, Int. J. Renew. Energy Dev., 11(2), 413–421, doi: 10.14710/ijred.2022.43477.
- 5. Bezrukovs, D., Bezrukovs, V., Bezrukovs, V., Konuhova, M., and Aniskevich, S. 2020. The comparison of the efficiency of small wind turbine generators with horizontal and vertical axis under low wind conditions, Latv. J. Phys. Tech. Sci., 57(5), 61–72, doi: 10.2478/lpts-2020-0028.
- 6. Bloomfield, H.C., Gonzalez, P.L.M., Lundquist, J.K., Stoop, L.P., Browell, J., Dargaville, R., De Felice, M., Gruber, K., Hilbers, A., Kies, A. and Panteli, M. 2021. The importance of weather and climate to energy systems: a workshop on next generation challenges in energy–climate modeling. Bulletin of the American Meteorological Society, 102(1), 159–167, doi: /10.1175/BAMS-D-20-0256.1
- 7. Cai, Y., Zhao, H., Li, X., and Liu, Y. 2023. Effects of yawed inflow and blade-tower interaction on the aerodynamic and wake characteristics of a horizontal-axis wind turbine, Energy, 264, 126246, doi: 10.1016/j.energy.2022.126246.
- 8. Dar, A.S., Armengol Barcos, G., and Porté-Agel, F. 2022. An experimental investigation of a roofmounted horizontal-axis wind turbine in an idealized urban environment, Renew. Energy, 193, 1049–1061, doi: 10.1016/J.RENENE.2022.05.035.
- 9. Duan, L., Sun, Q., He, Z., and Li, G. 2022, Wake topology and energy recovery in floating horizontal-axis wind turbines with harmonic surge motion, Energy, 260, 124907, doi: 10.1016/J.ENERGY.2022.124907.
- 10. Eltayesh, A., Castellani, F., Burlando, M., Hanna, M.B., Huzayyin, A.S., El-Batsh, H.M. and Becchetti, M. 2021. Experimental and numerical investigation of the effect of blade number on the aerodynamic performance of a small-scale horizontal axis wind turbine. Alexandria Engineering Journal, 60(4), 3931–3944., doi: 10.1016/j.aej.2021.02.048.
- 11. Evans, A., Strezov, V. and Evans, T.J. 2009. Assessment of sustainability indicators for renewable energy technologies, Renew. Sustain. Energy Rev., 13(5), 1082–1088, doi: 10.1016/j.rser.2008.03.008.
- 12. Garcia-Ribeiro, D., Flores-Mezarina, J.A., BravoMosquera, P.D., and Cerón-Muñoz, H.D 2021. Parametric CFD analysis of the taper ratio effects of a winglet on the performance of a Horizontal Axis Wind Turbine, Sustain. Energy Technol. Assessments, 47, 101489, doi: 10.1016/J.SETA.2021.101489.
- 13. Hassanzadeh, A., Hassanabad, H.A, and Dadvand, A. 2016. Aerodynamic shape optimization and analysis of small wind turbine blades employing the Viterna approach for post-stall region, Alexandria Eng. J., 55(3), 2035–2043, doi: 10.1016/j.aej.2016.07.008.
- 14. Jain, P. 2011. Wind Energy Engineering. New York: McGraw-Hill Companies, Inc.
- 15. Jamdade, P.G., Patil, S.V., and Jamdade, S.G. 2013. Assessment of power coefficient of an off line wind turbine generator system, Electron. J. Energy Environ., 1(3), 2760–2767, doi: 10.7770/ejee-v1n3-art683.
- 16. Jokar, H., Vatankhah, R., and Mahzoon, M. 2023. Active vibration control of horizontal-axis wind turbine blades using disturbance observer-based boundary control approach, Eng. Struct., 275, 115323, doi: 10.1016/J.ENGSTRUCT.2022.115323.
- 17. Mathew, S. 2007. Wind energy: Fundamentals, resource analysis and economics. Berlin: SpringerVerlag, doi: 10.1007/3-540-30906-3.
- 18. Mitra A., and Chakraborty, A. 2022. Multi-objective optimization of composite airfoil fibre orientation under bending–torsion coupling for improved aerodynamic efficiency of horizontal axis wind turbine blade, J. Wind Eng. Ind. Aerodyn., 221, 104881, doi: 10.1016/J.JWEIA.2021.104881.
- 19. Neill S.P. and Hashemi, M.R. 2018. Offshore Wind, Fundam. Ocean Renew. Energy, 83–106, doi: 10.1016/b978-0-12-810448-4.00004-5.
- 20. Noronha, N.P., and Krishna, M. 2021. Aerodynamic performance comparison of airfoils suggested for small horizontal axis wind turbines, Mater. Today Proc., 46, 2450–2455, doi: 10.1016/J.MATPR.2021.01.359.
- 21. Noviani, L. 2019. Assessment of the wind power application in Indonesia. Indonesian Journal of Physics and Nuclear Application, 4(3), 78–85.
- 22. Patel, M.R. 1999. Wind and Solar Power Systems. New York: CRC Press.
- 23. Pellegrini, M., Guzzini, A., and Saccani, C. 2021. Experimental measurements of the performance of a micro-wind turbine located in an urban area, Energy Reports, 7, 3922–3934, doi: 10.1016/j.egyr.2021.05.081.
- 24. Perea-Moreno, M.A., Hernandez-Escobedo, Q., and Perea-Moreno, A.J. 2018. Renewable energy in urban areas: Worldwide research trends, Energies, 11(3), 1–19, doi: 10.3390/en11030577.
- 25. Predescu, M., Bejinariu, A., Mitroi, O., and Nedelcu, A. 2009. Influence of the number of blades on the mechanical power curve of wind turbines, Renew. Energy Power Qual. J., 1(7): 825–830, doi: 10.24084/repqj07.519.
- 26. Rahmatian, M.A., Tari, P.H., Mojaddam, M., and Majidi, S. 2022. Numerical and experimental study of the ducted diffuser effect on improving the aerodynamic performance of a micro horizontal axis wind turbine, Energy, 245, 123267, doi: 10.1016/J.ENERGY.2022.123267.
- 27. Staffell, I. and Pfenninger, S. 2018. The increasing impact of weather on electricity supply and demand. Energy, 145, 65–78, doi: 10.1016/j.energy.2017.12.051.
- 28. Siregar, R.H, Away, Y., Tarmizi, and Akhyar. 2023. Minimizing power losses for distributed generation (DG) placements by considering voltage profiles on distribution lines for different loads using genetic algorithm methods, Energies 16(14), 5388, doi: 10.3390/en16145388.
- 29. Syuhada, A., Mubarak, A., and Maulana, M.I. 2016. Study of hybrid power system potential to power agricultural water pump in mountain area, 1717, doi: 10.1063/1.4943488.
- 30. Syuhada, A., Maulana, M.I., and Fuadi, Z. 2017. Analysis of wind energy potential for agriculture pump in mountain area Aceh Besar, AIP Conf. Proc., 1855, doi: 10.1063/1.4985534.
- 31. Syuhada, A., Maulana, M.I., Syahriza, Sani, M.S.M., and Mamat, R. 2020. The Potential of Wind Velocity in the Banda Aceh Coast to the Ability to Generate Electrical Energy by Horizontal Axis Wind Turbines, in IOP Conference Series: Materials Science and Engineering, 788(1), doi: 10.1088/1757-899X/788/1/012082.
- 32. Wang, S.H., and Chen, S.H. 2008. Blade number effect for a ducted wind turbine, J. Mech. Sci. Technol., 22(10), 1984–1992, doi: 10.1007/s12206-008-0743-8.
- 33. Wang, P., Liu, Q., Li, C., Miao, W., Yue, M., and Xu, Z. 2022. Investigation of the aerodynamic characteristics of horizontal axis wind turbine using an active flow control method via boundary layer suction, Renew. Energy, 198, 1032–1048, doi: 10.1016/J.RENENE.2022.08.075.
- 34. Wen, J., Zhou, L., and Zhang, H. 2023. Mode interpretation of blade number effects on wake dynamics of small-scale horizontal axis wind turbine, Energy, 263, 125692, doi: 10.1016/J.ENERGY.2022.125692.
- 35. World Wind Energy Association (WWEA). Pitteloud and Gsänger, S. 2016. 2016 summary: Small wind summary.
- 36. Zhang, H., Wen, J., Zhan, J., and Xin, D. 2022. Effects of blade number on the aerodynamic performance and wake characteristics of a small horizontal-axis wind turbine, Energy Convers. Manag., 273, 116410, doi: 10.1016/j.enconman.2022.116410.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-27d5835c-0f5b-4d1b-8cca-6efc22d7f354