Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 22, no. 3 | art. no. e116
Tytuł artykułu

Fire performance of ultra‑high performance concrete: effect of fine aggregate size and fibers

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study conducted a thorough investigation on the combined effects of fine aggregate (FA) size, steel fiber, and polypropylene (PP) fiber on the spalling behavior and mechanical properties of ultra-high-performance concrete (UHPC) at high temperature. FAs with 0.6, 2.36, and 4.75 mm were incorporated with steel fibers or PP fibers in UHPC. Test results showed that the synergistic enhancement in spalling prevention of UHPC at high temperature was only found in the combination of PP fiber and large-sized FA. Large-sized FA not only increased the fraction of microcracks but also enhanced their connectivity in UHPC with PP fibers, thus increasing the permeability and improving the spalling resistance at high temperature. This reduced the required PP fiber content for spalling prevention. Besides, steel fibers and large-sized FAs had a combined negative effect on mechanical properties above 600 °C, resulting in even lower mechanical properties at 900 °C compared to UHPC without any fiber and UHPC with PP fibers. Microstructural observation also found that the degradation of steel fibers and microcracks generated by expansion of aggregate both severely damaged the microstructures of UHPC at 900 °C. By contrast, adding PP fibers reduced compressive strength of UHPC below 600 °C due to the voids left by the decomposition of PP fibers, but it did not affect compressive strength at 900 °C, as the cracks in the matrix was enlarged, which reduced the negative effect of PP fibers.
Wydawca

Rocznik
Strony
art. no. e116
Opis fizyczny
Bibliogr. 46 poz., rys., tab., wykr.
Twórcy
autor
  • College of Civil Engineering, Fuzhou University, Fuzhou 350108, China
  • School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
  • School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore, CKHTAN@ntu.edu.sg
Bibliografia
  • 1. Wang D, Shi C, Wu Z, Xiao J, Huang Z, Fang Z. A review on ultra high performance concrete: Part II Hydration, microstructure and properties. Constr Build Mater. 2015;96:368-77.
  • 2. Shi Y, Long G, Ma C, Xie Y, He J. Design and preparation of ultra-high performance concrete with low environmental impact. J Clean Prod. 2019;214:633-43.
  • 3. Wu Z, Khayat KH, Shi C, Tutikian BF, Chen Q. Mechanisms underlying the strength enhancement of UHPC modified with nano-SiO2 and nano-CaCO3. Cem Concr Compos. 2021;119:103992.
  • 4. Yu R, Spiesz P, Brouwers HJH. Mix design and properties assessment of ultra-high performance fibre reinforced concrete (UHPFRC). Cem Concr Res. 2014;56:29-39.
  • 5. Shi C, Wu Z, Xiao J, Wang D, Huang Z, Fang Z. A review on ultra high performance concrete: Part I. Raw materials and mixture design. Constr Build Mater. 2015;101:741-51.
  • 6. Teichmann T, Schmidt M (2004) Influence of the packing density of fine particles on structure, strength and durability of UHPC. First international symposium on ultra high performance concrete, Kassel, pp. 313-323.
  • 7. Liu J, Farzadnia N, Shi C, Ma X. Effects of superabsorbent polymer on shrinkage properties of ultra-high strength concrete under drying condition. Constr Build Mater. 2019;215:799-811.
  • 8. Liu J, Shi C, Farzadnia N, Ma X. Effects of pretreated fine light-weight aggregate on shrinkage and pore structure of ultra-high strength concrete. Constr Build Mater. 2019;204:276-87.
  • 9. Cwirzen A, Penttala V, Vornanen C. Reactive powder based concretes: Mechanical properties, durability and hybrid use with OPC. Cem Concr Res. 2008;38:121-26.
  • 10. Pyo S, Kim HK, Lee BY. Effects of coarser fine aggregate on tensile properties of ultra high performance concrete. Cem Concr Compos. 2017;84:28-35.
  • 11. Li Y, Tan KH, Yang EH. Influence of aggregate size and inclusion of polypropylene and steel fibers on the hot permeability of ultra-high performance concrete (UHPC) at elevated temperature. Constr Build Mater. 2018;169:629-37.
  • 12. Li Y, Pimienta P, Pinoteau N, Tan KH. Effect of aggregate size and inclusion of polypropylene and steel fibers on explosive spalling and pore pressure in ultra-high-performance concrete (UHPC) at elevated temperature. Cem Concr Compos. 2019;99:62-71.
  • 13. Yang J, Peng G, Zhao J, Shui G. On the explosive spalling behavior of ultra-high performance concrete with and without coarse aggregate exposed to high temperature. Constr Build Mater. 2019;226:932-44.
  • 14. Lee JH, Sohn YS, Lee SH. Fire resistance of hybrid fibre-reinforced, ultra-high-strength concrete columns with compressive strength from 120 to 200 MPa. Mag Concr Res. 2012;64:539-50.
  • 15. Choe G, Kim G, Gucunski N, Lee S. Evaluation of the mechanical properties of 200MPa ultra-high-strength concrete at elevated temperatures and residual strength of column. Constr Build Mater. 2015;86:159-68.
  • 16. Klingsch EWH (2014) Explosive spalling of concrete in fire, Institute of Structural Engineering, Swiss Federal Institute of Technology in Zurich (ETHZ).
  • 17. Li Y, Tan KH, Yang EH. Synergistic effects of hybrid polypropylene and steel fibers on explosive spalling prevention of ultra-high performance concrete at elevated temperature. Cem Concr Compos. 2019;96:174-81.
  • 18. Zhang D, Tan GY, Tan KH. Combined effect of flax fibers and steel fibers on spalling resistance of ultra-high performance concrete at high temperature. Cem Concr Compos. 2021;121:104067.
  • 19. Zhang D, Zhang Y, Dasari A, Tan KH, Weng Y. Effect of spatial distribution of polymer fibers on preventing spalling of UHPC at high temperatures. Cem Concr Res. 2021;140:106281.
  • 20. Canbaz M. The effect of high temperature on reactive powder concrete. Constr Build Mater. 2014;70:508-13.
  • 21. Hung CC, Chen YT, Yen CH. Workability, fiber distribution, and mechanical properties of UHPC with hooked end steel macrofibers. Constr Build Mater. 2020;260:119944.
  • 22. Dingqiang F, Yu R, Kangning L, Junhui T, Zhonghe S, Chunfeng W, Shuo W, Zhenfeng G, Zhengdong H, Qiqi S. Optimized design of steel fibres reinforced ultra-high performance concrete (UHPC) composites: Towards to dense structure and efficient fibre application. Constr Build Mater. 2021;273:121698.
  • 23. Kim YS, Ohmiya Y, Kanematsu M, Kim GY. Effect of aggregate on residual mechanical properties of heated ultra-high-strength concrete. Mater Struct. 2016;49:3847-59.
  • 24. Liu K, Wu C, Li X, Liu J, Tao M, Fang J, Xu S. The influences of cooling regimes on fire resistance of ultra-high performance concrete under static-dynamic coupled loads. J Build Eng. 2021;44:103336.
  • 25. Peng G-F, Niu X-J, Shang Y-J, Zhang D-P, Chen X-W, Ding H. Combined curing as a novel approach to improve resistance of ultra-high performance concrete to explosive spalling under high temperature and its mechanical properties. Cem Concr Res. 2018;109:147-58.
  • 26. Abid M, Hou X, Zheng W, Hussain RR. High temperature and residual properties of reactive powder concrete – A review. Constr Build Mater. 2017;147:339-51.
  • 27. Zheng W, Luo B, Wang Y. Compressive and tensile properties of reactive powder concrete with steel fibres at elevated temperatures. Constr Build Mater. 2013;41:844-51.
  • 28. ASTM C1437-15. Standard test method for flow of hydraulic cement mortar. ASTM International: West Conshohocken, PA; 2015.
  • 29. Zhang D, Liu Y, Tan KH. Spalling resistance and mechanical properties of strain-hardening ultra-high performance concrete at elevated temperature. Constr Build Mater. 2021;266:120961.
  • 30. Liu JC, Tan KH, Fan S. Residual mechanical properties and spalling resistance of strain-hardening cementitious composite with Class C fly ash. Constr Build Mater. 2018;181:253-65.
  • 31. Liu JC, Tan KH, Zhang D. Multi-response optimization of postfire performance of strain hardening cementitious composite. Cem Concr Compos. 2017;80:80-90.
  • 32. Liu J, Farzadnia N, Shi C. Effects of superabsorbent polymer on interfacial transition zone and mechanical properties of ultra-high performance concrete. Constr Build Mater. 2020;231:117142.
  • 33. Pi Z, Xiao H, Liu R, Liu M, Li H. Effects of brass coating and nano-SiO2 coating on steel fiber-matrix interfacial properties of cement-based composite. Composites Part B. 2020;189:107904.
  • 34. Zhang D, Shahin MA, Yang Y, Liu H, Cheng L. Effect of microbially induced calcite precipitation treatment on the bonding properties of steel fiber in ultra-high performance concrete. J Build Eng. 2022;50:104132.
  • 35. Zhang D, Tan KH, Dasari A, Weng Y. Effect of natural fibers on thermal spalling resistance of ultra-high performance concrete. Cem Concr Compos. 2020;109:103512.
  • 36. Zhang D, Dasari A, Tan KH. On the mechanism of prevention of explosive spalling in ultra-high performance concrete with polymer fibers. Cem Concr Res. 2018;113:169-77.
  • 37. Abramoff MD, Magalhaes PJ, Ram SJ. Image processing with ImageJ. Biophotonics Int. 2004;11:36-42.
  • 38. Zhou C, Li K, Pang X. Geometry of crack network and its impact on transport properties of concrete. Cem Concr Res. 2012;42:1261-72.
  • 39. Landis E, Zhang T, Nagy E, Nagy G, Franklin W. Cracking, damage and fracture in four dimensions. Mater Struct. 2007;40:357-64.
  • 40. Li Y, Zhang Y, Yang EH, Tan KH. Effects of geometry and fraction of polypropylene fibers on permeability of ultra-high performance concrete after heat exposure. Cem Concr Res. 2019;116:168-78.
  • 41. Wu Z, Wong HS, Buenfeld NR. Influence of drying-induced microcracking and related size effects on mass transport properties of concrete. Cem Concr Res. 2015;68:35-48.
  • 42. Wang HL, Dai JG, Sun XY, Zhang XL. Characteristics of concrete cracks and their influence on chloride penetration. Constr Build Mater. 2016;107:216-25.
  • 43. Wu Z, Shi C, He W, Wu L. Effects of steel fiber content and shape on mechanical properties of ultra-high performance concrete. Constr Build Mater. 2016;103:8-14.
  • 44. Qi J, Yao Y, Wang J, Han F, Lv J. Effect of sand grain size and fibre size on macro–micro interfacial bond behaviour of steel fibres and UHPC mortars. Mag Concr Res. 2021;73:228-39.
  • 45. Li Y, Yang EH, Tan KH. Effects of heating followed by water quenching on strength and microstructure of ultra-high performance concrete. Constr Build Mater. 2019;207:403-11.
  • 46. Zheng W, Luo B, Wang Y. Microstructure and mechanical properties of RPC containing PP fibres at elevated temperatures. Mag Concr Res. 2014;66:397-408.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-27d57b7f-4c86-4815-897f-a666afaf38ed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.