Warianty tytułu
Języki publikacji
Abstrakty
Accurate estimation of solar radiation is crucial for harnessing this abundant natural resource effectively. Measuring solar radiation directly requires ground station networks, which are either unavailable or very limited in many regions of the world, including Vietnam, particularly in remote areas due to resource constraints. Therefore, this study was carried out with the objective to develop hybrid artificial intelligence (AI) models to predict solar radiations correctly using other meteorological data such as wind speed, relative humidity, maximum and minimum temperature and rainfall which can be measured at site easily. In this study, we have proposed three novel hybrid AI models, namely ANFIS-GA, ANFIS-BBO and ANFIS-SA, which combine the adaptive neuro-fuzzy inference system (ANFIS) technique with genetic algorithm (GA), biogeography base optimization (BBO) and simulated annealing (SA), respectively, for predicting daily solar radiation in Hoa Binh province, Vietnam. The performance of these hybrid models was evaluated using statistical indicators, including correlation coefficient (R), root-mean-squared error (RMSE) and mean absolute error (MAE). The results demonstrate that all three optimized models outperform the single ANFIS model. Among them, the ANFIS-BBO model exhibits the highest predictive capability (RMSE = 3.141 MJ/m2, MAE = 2.439 MJ/m2, R = 0.874). Sensitivity analysis reveals that maximum temperature is the most influential factor for predicting daily solar radiation. The findings of this study have significant implications for predicting solar radiation using AI methods, particularly ANFIS-BBO, with minimal meteorological data in remote locations not only in Vietnam but also globally.
Czasopismo
Rocznik
Tom
Strony
1439--1453
Opis fizyczny
Bibliogr. 103 poz.
Twórcy
autor
- University of Transport Technology, Hanoi 100000, Vietnam, binhpt@utt.edu.vn
autor
- Thuyloi University, Hanoi 100000, Vietnam, bktrinh@tlu.edu.vn
autor
- DDG (R) Geological Survey of India, Gandhinagar, India, indra52prakash@gmail.com
autor
- University of Transport Technology, Hanoi 100000, Vietnam
Bibliografia
- 1. Abraham A (2005) Adaptation of fuzzy inference system using neural learning. In: Nedjah N, de Macedo Mourelle L (eds) Fuzzy systems engineering: theory and practice. Springer, Berlin, pp 53-83
- 2. Aditya M, Chandranath C, Singh RN (2009) Flood Forecasting using ANN, neuro-fuzzy, and neuro-GA models. J Hydrol Eng 14:647652. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000040
- 3. Ağbulut Ü, Gürel AE, Biçen Y (2021) Prediction of daily global solar radiation using different machine learning algorithms: evaluation and comparison. Renew Sustain Energy Rev 135:110114. https:// doi.org/10.1016/j.rser.2020.110114
- 4. Allen RG (1997) Self-calibrating method for estimating solar radiation from air temperature. J Hydrol Eng 2:56-67. https://doi.org/10. 1061/(ASCE)1084-0699(1997)2:2(56)
- 5. Angstrom A (1924) Solar and terrestrial radiation. Q J R Meteorol Soc 50:121-125
- 6. Bahel V, Bakhsh H, Srinivasan R (1987) A correlation for estimation of global solar radiation. Energy 12:131-135. https://doi.org/10. 1016/0360-5442(87)90117-4
- 7. Bataineh K, Dalalah D (2012) Optimal configuration for design of stand-alone PV system. Smart Grid Renew Energy 3:720-726. https://doi.org/10.4236/sgre.2012.32020
- 8. Belaid S, Mellit A (2016) Prediction of daily and mean monthly global solar radiation using support vector machine in an arid climate. Energy Convers Manag 118:105-118. https://doi.org/10.1016/j. enconman.2016.03.082
- 9. Bhattacharya T, Chakraborty AK, Pal K (2014) Effects of ambient temperature and wind speed on performance of monocrystalline solar photovoltaic module in Tripura, India. J Solar Energy. https://www.hindawi.com/journals/jse/2014/817078/. Accessed 26 Jun 2019
- 10. Bilal BO, Sambou V, Kébé CMF et al (2012) Methodology to size an optimal stand-alone PV/wind/diesel/battery system minimizing the levelized cost of energy and the CO2 emissions. Energy Procedia 14:1636-1647. https://doi.org/10.1016/j.egypro.2011. 12.1145
- 11. Bishoge OK, Zhang L, Mushi WG (2018) The potential renewable energy for sustainable development in Tanzania: a review. Clean Technol 1:70-88. https://doi.org/10.3390/cleantechnol1010006
- 12. Bou-Rabee M, Sulaiman SA, Saleh MS, Marafi S (2017) Using artificial neural networks to estimate solar radiation in Kuwait. Renew Sustain Energy Rev 72:434-438. https://doi.org/10.1016/j.rser. 2017.01.013
- 13. Bristow KL, Campbell GS (1984) On the relationship between incoming solar radiation and daily maximum and minimum temperature. Agric for Meteorol 31:159-166. https://doi.org/10.1016/ 0168-1923(84)90017-0
- 14. Bui K-TT, Bui DT, Zou J et al (2016) A novel hybrid artificial intelligent approach based on neural fuzzy inference model and particle swarm optimization for horizontal displacement modeling of hydropower dam. Neural Comput Appl 27(8):1495-1506
- 15. Bui DT, Khosravi K, Li S et al (2018) New hybrids of ANFIS with several optimization algorithms for flood susceptibility modeling. Water (MDPI) 10(9):1210
- 16. Cano D, Monget JM, Albuisson M et al (1986) A method for the determination of the global solar radiation from meteorological satellite data. Sol Energy 37:31-39. https://doi.org/10.1016/ 0038-092X(86)90104-0
- 17. Cao XH, Stojkovic I, Obradovic Z (2016) A robust data scaling algorithm to improve classification accuracies in biomedical data. BMC Bioinform 17:359. https://doi.org/10.1186/ s12859-016-1236-x
- 18. Chegaar M, Chibani A (2001) Global solar radiation estimation in Algeria. Energy Convers Manag 42:967-973. https://doi.org/ 10.1016/S0196-8904(00)00105-9
- 19. Chen R, Ersi K, Yang J et al (2004) Validation of five global radiation models with measured daily data in China. Energy Convers Manag 45:1759-1769. https://doi.org/10.1016/j.enconman.2003. 09.019
- 20. Chen J, Xu F, Tan D et al (2015) A control method for agricultural greenhouses heating based on computational fluid dynamics and energy prediction model. Appl Energy 141:106-118. https://doi. org/10.1016/j.apenergy.2014.12.026
- 21. Cheng Y-H, Lai C-M, Teh J (2017) Genetic algorithm with small population size for search feasible control parameters for parallel hybrid electric vehicles. AIMS Energy 5:930-943. https:// doi.org/10.3934/energy.2017.6.930
- 22. Christy AA, Raj PADV (2014) Adaptive biogeography based predator-prey optimization technique for optimal power flow. Electr Power Energy Syst 62:344-352
- 23. Cornejo-Bueno L, Casanova-Mateo C, Sanz-Justo J, Salcedo-Sanz S (2019) Machine learning regressors for solar radiation estimation from satellite data. Sol Energy 183:768-775. https://doi. org/10.1016/j.solener.2019.03.079
- 24. Cruz-Peragon F, Palomar JM, Casanova PJ et al (2012) Characterization of solar flat plate collectors. Renew Sustain Energy Rev 16:1709-1720. https://doi.org/10.1016/j.rser.2011.11.025
- 25. Dao DV, Ly H-B, Trinh SH et al (2019a) Artificial intelligence approaches for prediction of compressive strength of geopolymer concrete. Materials 12:983. https://doi.org/10.3390/ma120 60983
- 26. Dao DV, Trinh SH, Ly H-B, Pham BT (2019b) Prediction of compressive strength of geopolymer concrete using entirely steel slag aggregates: novel hybrid artificial intelligence approaches. Appl Sci 9:1113. https://doi.org/10.3390/app9061113
- 27. Devore JL (2015) Probability and statistics for engineering and the sciences, 9th edn. Cengage Learning, New York
- 28. Fuka DR, Walter MT, MacAlister C et al (2014) Using the Climate Forecast System Reanalysis as weather input data for watershed models. Hydrol Process 28:5613-5623. https://doi.org/ 10.1002/hyp.10073
- 29. Gala Y, Fernández Á, Díaz J, Dorronsoro JR (2016) Hybrid machine learning forecasting of solar radiation values. Neurocomputing 176:48-59. https://doi.org/10.1016/j.neucom.2015.02.078
- 30. Gao X, Liu J, Zhang J et al (2013) Feasibility evaluation of solar photovoltaic pumping irrigation system based on analysis of dynamic variation of groundwater table. Appl Energy 105:182-193. https://doi.org/10.1016/j.apenergy.2012.11.074
- 31. Goldberg DE, Holland JH (1988) Genetic algorithms and machine learning. Mach Learn 3:95-99
- 32. Gouda S, Hussein Z, Luo S, Yuan Q (2019) Model selection for accurate daily global solar radiation prediction in China. J Clean Prod 221:132-144
- 33. Güçlü YS, Yelegen MÖ, Dabanlı İ, Şişman E (2014) Solar irradiation estimations and comparisons by ANFIS, Angström-Prescott and dependency models. Sol Energy 109:118-124
- 34. Hacioğlu R (2017) Prediction of solar radiation based on machine learning methods. JCS 2:16-20
- 35. Handayani K, Krozer Y, Filatova T (2019) From fossil fuels to renewables: an analysis of long-term scenarios considering technological learning. Energy Policy 127:134-146. https:// doi.org/10.1016/j.enpol.2018.11.045
- 36. Hernandez-Ramirez G, Lawrence-Smith EJ, Sinton SM et al (2014) Root responses to alterations in macroporosity and penetrability in a silt loam soil. Soil Sci Soc Am J 78:1392-1403. https:// doi.org/10.2136/sssaj2014.01.0005
- 37. Holland JH (1992) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence, reprint edition. A Bradford Book, Cambridge
- 38. Hong H, Panahi M, Shirzadi A et al (2018) Flood susceptibility assessment in Hengfeng area coupling adaptive neuro-fuzzy inference system with genetic algorithm and differential evolution. Sci Total Environ 621:1124-1141. https://doi.org/10. 1016/j.scitotenv.2017.10.114
- 39. Jaafari A, Panahi M, Pham BT et al (2019) Meta optimization of an adaptive neuro-fuzzy inference system with grey wolf optimizer and biogeography-based optimization algorithms for spatial prediction of landslide susceptibility. CATENA 175:430-445. https://doi.org/10.1016/j.catena.2018.12.033
- 40. Jain PC (1986) Global irradiation estimation for Italian locations. Sol Wind Technol 3:323-328. https://doi.org/10.1016/0741-983X(86)90013-5
- 41. Jang J-R (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23:665-685. https://doi.org/ 10.1109/21.256541
- 42. Jang J-SR (1997) Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence. Prentice Hall, New York
- 43. Jin Z, Yezheng W, Gang Y (2005) General formula for estimation of monthly average daily global solar radiation in China. Energy Convers Manag 46:257-268. https://doi.org/10.1016/j.enconman. 2004.02.020
- 44. Kalogirou SA, Panteliou S, Dentsoras A (1999) Modeling of solar domestic water heating systems using artificial neural networks. Sol Energy 65:335-342. https://doi.org/10.1016/S0038-092X(99)00013-4
- 45. Karim MA, Hawlader MNA (2004) Development of solar air collectors for drying applications. Energy Convers Manag 45:329-344. https://doi.org/10.1016/S0196-8904(03)00158-4
- 46. Khorasanizadeh H, Mohammadi K (2013) Prediction of daily global solar radiation by day of the year in four cities located in the sunny regions of Iran. Energy Convers Manag 76(2013):385-392
- 47. Lalwani M, Kothari DP, Singh M (2011) Size optimization of standalone photovoltaic system under local weather conditions in India
- 48. Le LM, Ly H-B, Pham BT et al (2019) Hybrid artificial intelligence approaches for predicting buckling damage of steel columns under axial compression. Materials 12:1670. https://doi.org/10. 3390/ma12101670
- 49. Lee D, Cheng C-C (2016) Energy savings by energy management systems: a review. Renew Sustain Energy Rev 56:760-777. https:// doi.org/10.1016/j.rser.2015.11.067
- 50. Leema N, Nehemiah HK, Kannan A (2016) Neural network classifier optimization using Differential Evolution with Global Information and Back Propagation algorithm for clinical datasets. Appl Soft Comput 49:834-844. https://doi.org/10.1016/j.asoc.2016. 08.001
- 51. Leo HG, Hargreaves GH, Paul RJ (1985) Irrigation water requirements for Senegal River Basin. J Irrig Drain Eng 111:265-275. https:// doi.org/10.1061/(ASCE)0733-9437(1985)111:3(265)
- 52. Lewis G (1992) An empirical relation for estimating global irradiation for Tennessee, U.S.A. Energy Convers Manag 33:1097-1099. https://doi.org/10.1016/0196-8904(92)90007-J
- 53. Lv Y, Si P, Rong X et al (2018) Determination of optimum tilt angle and orientation for solar collectors based on effective solar heat collection. Appl Energy 219:11-19. https://doi.org/10.1016/j. apenergy.2018.03.014
- 54. Ly H-B, Monteiro E, Le T-T et al (2019) Prediction and sensitivity analysis of bubble dissolution time in 3d selective laser sintering using ensemble decision trees. Materials 12:1544. https://doi.org/ 10.3390/ma12091544
- 55. Mashaly AF, Alazba AA (2018) ANFIS modeling and sensitivity analysis for estimating solar still productivity using measured operational and meteorological parameters. Water Supply 18:1437-1448. https://doi.org/10.2166/ws.2017.208
- 56. McCall J (2005) Genetic algorithms for modelling and optimisation. J Comput Appl Math 184:205-222. https://doi.org/10.1016/j.cam. 2004.07.034
- 57. Melanie M (1999) An introduction to genetic algorithms, 5th edn. MIT Press
- 58. Mghouchi YE, Ajzoul A, Bouardi E (2016) Prediction of daily solar radiation intensity by day of the year in twenty-four cities of Morocco. Renew Sustain Energy Rev 53:823-831
- 59. Mohammadi K, Shamshirband S, Tong CW et al (2015) Potential of adaptive neuro-fuzzy system for prediction of daily global solar radiation by day of the year. Energy Convers Manag 93:406-413
- 60. Mohanty S, Patra PK, Sahoo SS (2016) Prediction and application of solar radiation with soft computing over traditional and conventional approach—a comprehensive review. Renew Sustain Energy Rev 56:778-796. https://doi.org/10.1016/j.rser.2015. 11.078
- 61. Mousavi SM, Mostafavi ES, Jiao P (2017) Next generation prediction model for daily solar radiation on horizontal surface using a hybrid neural network and simulated annealing method. Energy Convers Manag 153:671-682. https://doi.org/10.1016/j.encon man.2017.09.040
- 62. Nguyen BT, Pryor TL (1996) A computer model to estimate solar radiation in Vietnam. Renew Energy 9:1274-1278
- 63. Nguyen B, Pryor T (1997) The relationship between global solar radiation and sunshine duration in Vietnam. Renew Energy 11:47-60
- 64. Nguyen MD, Costache R, Sy AH et al (2022a) Novel approach for soil classification using machine learning methods. Bull Eng Geol Environ 81:468. https://doi.org/10.1007/s10064-022-02967-7
- 65. Nguyen TT, Nguyen DD, Nguyen SD et al (2022b) Forecasting construction price index using artificial intelligence models: support vector machines and radial basis function neural network. J Sci Transp Technol. https://doi.org/10.58845/jstt.utt.2022.en.2. 4.9-19
- 66. Nomiyama F, Asai J, Murakami T, Murata J (2011) A study on global solar radiation forecasting using weather forecast data. In: 2011 IEEE 54th international Midwest symposium on circuits and systems (MWSCAS), pp 1-4
- 67. Okoye CO, Solyali O (2017) Optimal sizing of stand-alone photovoltaic systems in residential buildings. Energy 126:573-584. https:// doi.org/10.1016/j.energy.2017.03.032
- 68. Paoli C, Voyant C, Muselli M, Nivet M-L (2010) Forecasting of preprocessed daily solar radiation time series using neural networks. Sol Energy 84:2146-2160. https://doi.org/10.1016/j. solener. 2010.08.011
- 69. Park J-K, Das A, Park J-H (2015) A new approach to estimate the spatial distribution of solar radiation using topographic factor and sunshine duration in South Korea. Energy Convers Manag 101:30-39. https://doi.org/10.1016/j.enconman.2015.04.021
- 70. Pétrowski JDA, Taillard PSE (2005) Metaheuristics for hard optimization. Springer
- 71. Pham DT, Karaboga D (2000) Intelligent optimisation techniques. Springer
- 72. Pham BT, Prakash I (2017) Spatial prediction of rainfall induced shallow landslides using adaptive-network-based fuzzy inference system and particle swarm optimization: a case study at the Uttarakhand Area, India. In: Bui DT, Do AN, Bui H-B, Hoang N-D (eds) Advances and applications in geospatial technology and earth resources. Springer
- 73. Pham BT, Nguyen MD, Dao DV et al (2019) Development of artificial intelligence models for the prediction of Compression Coefficient of soil: an application of Monte Carlo sensitivity analysis. Sci Total Environ 679:172-184. https://doi.Org/10.1016/j.scitotenv. 2019.05.061
- 74. Polo J, Bernardos A, Navarro AA et al (2015a) Solar resources and power potential mapping in Vietnam using satellite-derived and GIS-based information. Energy Convers Manag 98:348-358
- 75. Polo J, Gastón M, Vindel JM, Pagola I (2015b) Spatial variability and clustering of global solar irradiation in Vietnam from sunshine duration measurements. Renew Sustain Energy Rev 42:1326-1334
- 76. Prescott JA (1940) Evaporation from a water surface in relation to solar radiation. Trans R Soc S Aust 46:114-118
- 77. Rao KR (1983) Solar radiation, measurements and availability in the countries of South East Asian Region. In: Lim BBP (ed) Solar energy applications in the tropics. Springer, Netherlands, pp 25-56
- 78. Rehamnia I, Benlaoukli B, Chouireb M et al (2023) Estimation of seepage flow using optimized artificial intelligent models. Geotech Geol Eng 41:2727-2739. https://doi.org/10.1007/ s10706-023-02423-7
- 79. Saberian A, Hizam H, Radzi MAM et al (2014) Modelling and prediction of photovoltaic power output using artificial neural networks. Int J Photoenergy. https://www.hindawi.com/journals/ijp/2014/ 469701/. Accessed 26 Jun 2019
- 80. Salamon P, Sibani P, Frost R (2002) Facts, Conjectures, and Improvements for Simulated Annealing. Society for Industrial and Applied Mathematics (SIAM)
- 81. Shiva Kumar B, Sudhakar K (2015) Performance evaluation of 10 MW grid connected solar photovoltaic power plant in India. Energy Rep 1:184-192. https://doi.org/10.1016/j.egyr.2015.10.001
- 82. Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12:702-713. https://doi.org/10.1109/TEVC.2008. 919004
- 83. Simon D (2013) Biogeography-based optimization
- 84. Sohail EA (2017) Multiuser detection: comparative analysis of heuristic approach. Int J Adv Appl Sci 4:115-120. https://doi.org/10. 21833/ijaas.2017.06.016
- 85. Takagi T, Sugeno M (1993) Fuzzy identification of systems and its application to modeling and control. In: Readings in fuzzy sets for intelligent systems. Morgan Kaufmann, pp 387-403
- 86. Takagi T, Sugeno M (1983) Derivation of fuzzy control rules from human operator’s control actions. IFAC Proc Vol 16:55-60. https://doi.org/10.1016/S1474-6670(17)62005-6
- 87. Taşdemiroǧlu E, Sever R (1991) An improved correlation for estimating solar radiation from bright sunshine data for Turkey. Energy Convers Manag 31:599-600. https://doi.org/10.1016/0196-8904(91)90095-Z
- 88. Tien Bui D, Pradhan B, Nampak H et al (2016) Hybrid artificial intelligence approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibilitgy modeling in a high-frequency tropical cyclone area using GIS. J Hydrol 540:317-330. https://doi.org/10.1016/j.jhydrol.2016.06.027
- 89. Türk Togrul I, Onat E (1999) A study for estimating solar radiation in Elazig using geographical and meteorological data. Energy Convers Manag 40:1577-1584. https://doi.org/10.1016/S0196-8904(99)00035-7
- 90. Twersky M, Fischbach PE (1978) Irrigation systems for the solar-photovoltaic energy program. Department of Energy
- 91. Unni S, Prabhu AA, Pandey R et al (2019) Artificial neural network-genetic algorithm (ANN-GA) based medium optimization for the production of human interferon gamma (hIFN—Y) in Kluyvero-myces lactis cell factory. Can J Chem Eng 97:843-858. https:// doi.org/10.1002/cjce.23350
- 92. van Laarhoven PJM, Aarts EHL (1987) Simulated annealing theory with applications. Springer
- 93. Vidal RVV (1993) Applied simulated annealing. Springer
- 94. Voyant C, Muselli M, Paoli C, Nivet M-L (2012) Numerical weather prediction (NWP) and hybrid ARMA/ANN model to predict global radiation. Energy 39:341-355. https://doi.org/10.1016/j. energy.2012.01.006
- 95. Voyant C, Paoli C, Muselli M, Nivet M-L (2013) Multi-horizon solar radiation forecasting for Mediterranean locations using time series models. Renew Sustain Energy Rev 28:44-52. https://doi. org/10.1016/j.rser.2013.07.058
- 96. Voyant C, Notton G, Kalogirou S et al (2017) Machine learning methods for solar radiation forecasting: a review. Renew Energy 105:569-582. https://doi.org/10.1016/j.renene.2016.12.095
- 97. Winiczenko R (2016) Effect of friction welding parameters on the tensile strength and microstructural properties of dissimilar AISI 1020-ASTM A536 joints. Int J Adv Manuf Technol 84:941-955. https://doi.org/10.1007/s00170-015-7751-5
- 98. Xue X (2017) Prediction of daily diffuse solar radiation using artificial neural networks. Int J Hydrogen Energy 42:28214-28221
- 99. Yadav AK, Chandel SS (2014) Solar radiation prediction using Artificial Neural Network techniques: a review. Renew Sustain Energy Rev 33:772-781
- 100. Yang L, Gao X, Lv F et al (2017) Study on the local climatic effects of large photovoltaic solar farms in desert areas. Sol Energy 144:244-253. https://doi.org/10.1016/j.solener.2017.01.015
- 101. Yeh H, Lin T-T (1996) Efficiency improvement of flat-plate solar air heaters. Energy 21:435-443. https://doi.org/10.1016/0360-5442(96)00008-4
- 102. Zeng J, Qiao W (2013) Short-term solar power prediction using a support vector machine. Renew Energy 52:118-127
- 103. Zhang L, Qiao N, Huang C, Wang S (2019) Monitoring drought effects on vegetation productivity using satellite solar-induced chlorophyll fluorescence. Remote Sens 11:378. https://doi.org/10.3390/ rs11040378
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-27d4ba09-0f2c-476c-b55b-60021cb30fde