Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | Vol. 19, nr 2 | 247--270
Tytuł artykułu

Nondifferentiable (Phi,rho)-type I and generalized (Phi,rho)-type I functions in nonsmooth vector optimization

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, new classes of nondifferentiable generalized invex functions are introduced. Further, nonsmooth vector optimization problems with functions belonging to the introduced classes of (generalized) (Phi,rho)-type I functions are considered. Sufficient optimality conditions and duality results for such classes of nonsmooth vector optimization problems are established. It turns out that the presented results are proved also for such nonconvex vector optimization problems in which not all functions constituting them possess the fundamental property of invexity.
Wydawca

Rocznik
Strony
247--270
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
autor
  • Faculty of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Łódź, Poland, antczak@math.uni.lodz.pl
Bibliografia
  • [1] R. P. Agarwal, I. Ahmad, Z. Husain and A. Jayswal, Optimality and duality in non-smooth multiobjective optimization involving K-type I invex functions, J. Inequal. Appl. (2010), article ID 898626.
  • [2] B. Aghezzaf and M. Hachimi, Generalized invexity and duality in multiobjective programming problems, J. Global Optim. 18 (2000), 91-101.
  • [3] T. Antczak, On G-invex multiobjective programming. Part I. Optimality, J. Global Optim. 43 (2009), 97-109.
  • [4] T. Antczak, On G-invex multiobjective programming. Part II. Duality, J. Global Optim. 43 (2009), 111-140.
  • [5] T. Antczak, Optimality and duality for nonsmooth multiobjective programming problems with V-r-invexity, J. Global Optim. 45 (2009), 319-334.
  • [6] T. Antczak, Optimality conditions and duality for nondifferentiable multiobjective programming problems involving d-r-type I functions, J. Comput. Appl. Math. 225 (2009), 236-250.
  • [7] T. Antczak and A. Stasiak, (Φ,ρ)-invexity in nonsmooth optimization, Numer. Fund. Anal. Optim. 32 (2011), 1-25.
  • [8] A. Ben-Israel and B. Mond, What is invexity?, J. Aust. Math. Soc. 28 (1986), 1-9.
  • [9] D. Bhatia and P. Jain, Generalized (F,ρ)-convexity and duality for non smooth multi-objective programs, Optimization 31 (1994), 153-164.
  • [10] F. H. Clarke, Nonsmooth Optimization, John Wiley & Sons, 1983.
  • [11] B. D. Craven, Nonsmooth multiobjective programming, Numer. Funct. Anal. Optim. 10 (1989), 49-64.
  • [12] G. Giorgi and A. Guerraggio, The notion of invexity in vector optimization: Smooth and nonsmooth case, in: Generalized Convexity, Generalized Monotonicity: Recent Results (Luminy 1996), Kluwer, Dordrecht (1998), 389-405.
  • [13] M. A. Hanson and B. Mond, Necessary and sufficient conditions in constrained optimization, Math. Program. 37 (1987), 51-58.
  • [14] M. A. Hanson, R. Pini and C. Singh, Multiobjective programming under generalized type I invexity, J. Math. Anal. Appl. 261 (2001), 562-577.
  • [15] V. Jeyakumar and B. Mond, On generalized convex mathematical programming, J. Aust. Math. Soc. Ser. B 34 (1992), 43-53.
  • [16] R. N. Kaul, S. K. Suneja and M. K. Srivastava, Optimality criteria and duality in multiobjective optimization involving generalized invexity, J. Optim. Theory Appl. 80 (1994), 465-482.
  • [17] D. S. Kim and S. Schaible, Optimality and duality for invex nonsmooth multiobjective programming problems, Optimization 53 (2004), 165-176.
  • [18] M. H. Kim and G. M. Lee, On duality theorems for nonsmooth Lipschitz optimization problems, J. Optim. Theory Appl. 110 (2001), 669-675.
  • [19] H. Kuk, G. M. Lee and D. S. Kim, Nonsmooth multiobjective programs with V-p-invexity, Indian J. Pure Appl. Math. 29 (1998), 405-412.
  • [20] H. Kuk and T. Tanino, Optimality and duality in nonsmooth multiobjective optimization involving generalized type I functions, Comput. Math. Appl. 45 (2003), 1497-1506.
  • [21] G. M. Lee, Nonsmooth invexity in multiobjective programming, J. Inform. Optim. Sci. 15(1994), 127-136.
  • [22] X. F. Li, J. L. Dong and Q. H. Liu, Lipschitz B-vex functions and nonsmooth programming, J. Optim. Theory Appl. 93 (1997), 557-574.
  • [23] S. K. Mishra, G. Giorgi and S. Y. Wang, Duality in vector optimization in Banach spaces with generalized convexity, J. Global Optim. 29 (2004), 415-424.
  • [24] S. K. Mishra and R. N. Mukherjee, On generalised convex multi-objective nonsmooth programming, J. Aust. Math. Soc. Ser. B 38 (1996), 140-148.
  • [25] S. K. Mishra, S. Y. Wang and K. K. Lai, Optimality and duality with generalized type I functions, J. Global Optim. 29 (2004), 425-438.
  • [26] S. K. Mishra, S. Y. Wang and K. K. Lai, Optimality and duality for a nonsmooth multiobjective optimization involving generalized type I functions, Math. Meth. Oper. Res. 67 (2008), 493-504.
  • [27] S. K. Mishra, S. Y. Wang and K. K. Lai, Optimality and duality for V-invex nonsmooth multiobjective programming problems, Optimization 57 (2008), 635-641.
  • [28] S. Nobakhtian, Generalized (F,ρ)-convexity and duality in nonsmooth problems of multiobjective optimization, J. Optim. Theory Appl. 136 (2008), 61-68.
  • [29] V. Preda, On efficiency and duality for multiobjective programs, J. Math. Anal. Appl. 166(1992), 365-377.
  • [30] N. G. Rueda and M. A. Hanson, Optimality criteria in mathematical programming involving generalized invexity, J. Math. Anal. Appl. 130 (1988), 375-385.
  • [31] L. Venkateswara Reddy and R. N. Mukherjee, Composite nonsmooth multiobjective programs with V-ρ-invexity, J. Math. Anal. Appl. 235 (1999), 567-577.
  • [32] T. Weir and V. Jeyakumar, A class of nonconvex functions and mathematical programming, Bull. Aust. Math. Soc. 38 (1988), 177-189.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-27c910d1-764f-47d8-8939-311fa4470b78
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.