Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | Vol. 20, nr 2(64) | 71--80
Tytuł artykułu

Effect of depth surface defects in carbon fibre reinforced composite material on the selected recurrence quantifications

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper discusses the problem of possibility of the detecting surface defects in carbon fibre reinforced plastics (CFRP) materials on the basis of the milling time series. First, the special defects in the hole-shaped with various depth were made. Next, the cutting forces are measured during the milling machining. Finally, the recurrence plot and quantification analysis was applied. The obtained results show that the depth defect influences the selected recurrence quantifications, which can be used as the simple defect indicators. The conducted research allow to determine the percentage share of the detectable defects. The novelty of the work and an unresolved problem is the selection of recurrence quantifications with the simultaneous use of them to detect the size of defects in carbon fibre reinforced plastics.
Wydawca

Rocznik
Strony
71--80
Opis fizyczny
Bibliogr. 24 poz., rys., wykr.
Twórcy
  • Lublin University of Technology, Mechanical Engineering Faculty, Department of Production Engineering, Lublin, Poland, k.ciecielag@pollub.pl
autor
  • Lublin University of Technology, Mechanical Engineering Faculty, Department of Applied Mechanics, Lublin, Poland
autor
  • Lublin University of Technology, Mechanical Engineering Faculty, Department of Production Engineering, Lublin, Poland
Bibliografia
  • 1. Litak G., Syta A., Rusinek R., Dynamical changes during composite milling: recurrence and multiscale entropy analysis, International Journal of Advanced Manufacturing Technology 56 (2011), 445–453.
  • 2. Kęcik K., Ciecieląg K., Zaleski K., Damage detection of composite milling process by recurrence plots and quantifications analysis, The International Journal of Advanced Manufacturing Technology 89 (2017), 133–144.
  • 3. Kęcik K., Rusinek R., Warminski J., Stability lobes analysis of nickel superalloys milling, International Journal of Bifurcation and Chaos 21(10) (2011), 2943–2954.
  • 4. Kęcik K., Rusinek R., Warminski J., Weremczuk A., Chatter control in the milling process of composite materials, Journal of Physics: Conference Series 382 (1) (2012), 1–6.
  • 5. Ciecieląg K., Kęcik K., Zaleski K., Influence of defect diameter on its detection in milling process of composite material using recurrence plot technique, Composites Theory and Practice 17(4) (2017), 194-199.
  • 6. Belaire-Franch J., Testing for Non-Linearity in an artificial financial market: a recurrence quantification approach, Journal of Economic Behavior and Organization 54(4) (2004), 483–494.
  • 7. Marwan N., Wessel N., Meyerfeldt U., Schirdewan A., Kurths J., Recurrence Plot Based Measures of Complexity and its Application to Heart Rate Variability Data, Physics Review E 66(2) (2002), 1-8.
  • 8. Grabowski T., Zastosowanie metody reccurence plots w analizie danych pomiarowych, Elektrotechnika i Elektronika 52(2) (2006), 85–96.
  • 9. Marwan N., Kurths J., Nonlinear analysis of bivariate data with cross-recurrence plots, Physics Letter A 302 (2002), 299–307.
  • 10. Teng, G.; Zhou, X.; Yang, C.; Zeng, X. A Nonlinear Method for Characterizing Discrete Defects in Thick Multilayer Composites, Applied Sciences 9 (1183) (2019), 1-16.
  • 11. Eckmann J.P., Oliffson Kamphorst S., Ruelle D., Recurrence Plots of dynamical systems, Europhysics Letters 4(9) (1987), 973–977.
  • 12. Fabretti A., Ausloos M.: Recurrence plot and recurrence quantification analysis techniques for detecting a critical regime. examples from financial market indices, International Journal of Modern Physics C 16 (2005), 1–32.
  • 13. Fraser A. M., Swinney H. L., Independent coordinates for strange attractors from mutual information, Physical Review A 33 (1986), 1134–4110.
  • 14. Kennel M., Brown R., Abarbanel H., Determining embedding dimension for phase space reconstruction using a geometrical construction, Physical Review A 45(6) (1992), 3403–3411.
  • 15. Yang Dong, Ren Wei-Xen, Hu Yi-Ding, Li Dan, Selection of optimal threshold to construct recurrence plot for structural operational vibration measurements, Journal of Sound and Vibration 349 (1992), 361–374.
  • 16. Webber C. L. Jr, Zbilut J. P., Dynamical assessment of physiological systems and states using recurrence plot strategies, Journal of Applied Physiology 76(2) (1994), 965–973.
  • 17. Zbilut J. P., Webber C. L. Jr, Embeddings and delays as derived from quantification of recurrence plots, Physics Letters A 171 (1992), 199–203.
  • 18. Marwan N., Carmen Romano M., Thiel M., Kurths J., Recurrence plots for the analysis of complex systems, Physics Reports 438 (2007), 237–329.
  • 19. Marwan N., Donges J. F. , Zou Y., Donner R. V., Kurths J., Complex network approach for recurrence analysis of time series, Physics Letter A 373(46) (2009), 4246–4254.
  • 20. Marwan N., Kurths J., Foerster S., Analysing spatially extended high-dimensional dynamics by reccurence plots, Physics Letters A 379 (2014), 894–900.
  • 21. Gao J., Cai H. On the structures and quantification of recurrence plots, Physics Letter A 270 (2000), 75–87.
  • 22. Wang Z., Yang C. L., Zhou X. J., Teng Y. H., Identification of localized void defects in composite by recurrence quantification analysis of ultrasonic backscattered signal, Russian Journal of Nondestructive Testing 55, 3 (2019), 192–201.
  • 23. Brandt C., Recurrence quantification analysis as an approach for ultrasonic testing of porous carbon fiber reinforced polymers, in Recurrence Plots and Their Quantifications: Expanding Horizons, Springer International Publisher, 2016.
  • 24. He Y., Qing H., Zhang Sh., Wang D., Zhu Sh., The cutting force and defect analysis in milling of carbon fiber-reinforced polymer (CFRP) composite, The International Journal of Advanced Manufacturing Technology, 93 (2017), 1829-1842.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-27b52205-609c-413a-b589-2d698690e125
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.