Warianty tytułu
Języki publikacji
Abstrakty
We provide a description of the integral points on elliptic curves y2 = x(x-2m) x (x + p), where p and p + 2m are primes. In particular, we show that for m = 2 such a curve has no nontorsion integral point, and for m = 1 it has at most one such point (with y > 0). Our proofs rely upon numerical computations and a variety of results on quartic and other diophantine equations, combined with an elementary analysis.
Rocznik
Tom
Strony
53--67
Opis fizyczny
Bibliogr. 21 poz., tab.
Twórcy
autor
- Institute of Mathematics, University of Szczecin, Wielkopolska 15, 70-451 Szczecin, Poland, tjedrzejak@gmail.com
autor
- Institute of Mathematics, University of Szczecin, Wielkopolska 15, 70-451 Szczecin, Poland, malgorzata.wieczorek@usz.edu.pl
Bibliografia
- [1] P. K. Alvanos and K. A. Draziotis, Integer solutions of the equation y2 = Ax4 + B, J. Integer Sequences 18 (2015), no. 4, art. 15.4.4, 14 pp.
- [2] M. Bennett, Integral points on congruent number curves, Int. J. Number Theory 9 (2013), 1619-1640.
- [3] M. Bennett and G. Walsh, Simultaneous quadratic equations with few or no solutions, Indag. Math. (N.S.) 11 (2000), 1-12.
- [4] W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), 235-265.
- [5] J. R. Chen, On the representation of a larger even integer as the sum of a prime and the product of at most two primes, Sci. Sinica 16 (1973), 157-176.
- [6] M. Cipu and M. Mignotte, On the number of solutions to systems of Pell equations, J. Number Theory 125 (2007), 356-392.
- [7] A. Dąbrowski and M. Wieczorek, On the equation y2 = x(x - 2m)(x + q- 2m), J. Number Theory 124 (2007), 364-379.
- [8] K. Draziotis, Integer points on the curve y2 = x3 ± pkx, Math. Comp. 75 (2006), 1493-1505.
- [9] G. H. Hardy and J. E. Littlewood, Some problems of ‘Partitio numerorum’; III: On the expression of a number as a sum of primes, Acta Math. 44 (1923), 1-70.
- [10] A. Knapp, Elliptic Curves, Princeton Univ. Press, Princeton, NJ, 1992.
- [11] G. Lettl, A. Pethő and P. Voutier, Simple families of Thue inequalities, Trans. Amer. Math. Soc. 351 (1999), 1871-1894.
- [12] J. Maynard, Small gaps between primes, Ann. of Math. 181 (2015), 383-413.
- [13] K. Ono, Euler’s concordant forms, Acta Arith. 78 (1996), 101-123.
- [14] DHJ Polymath, Variants of the Selberg sieve, and bounded intervals containing many primes, Res. Math. Sci. 1 (2014), art. 12, 83 pp.; Erratum, 2 (2015), art. 15, 2 pp.
- [15] E. Thomas, Complete solutions to a family of cubic Diophantine equations, J. Number Theory 34 (1990), 235-250.
- [16] C. L. Siegel, Ueber einige Anwendungen diophantischer Approximationen, Abh. Preuss. Akad. Wiss. Phys.-Math. Kl. 1929, no. 1, 70 pp.
- [17] L. Szalay, On the resolution of simultaneous Pell equations, Ann. Math. Inform. 34 (2007), 77-87.
- [18] D. T. Walker, On the diophantine equation mX2-nY2 = ±1, Amer. Math. Monthly 74 (1967), 504-513.
- [19] P. Walsh, On two classes of simultaneous Pell equations with no solutions, Math. Comp. 68 (1999), 385-388.
- [20] H. Yang and R. Fu, The integral points on elliptic curves y2 = x3 + (36n2 - 9)x - 2(36n2 - 5), Czechoslovak Math. J. 63 (2013), 375-383.
- [21] Y. Zhang, Bounded gaps between primes, Ann. of Math. 179 (2014), 1121-1174.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-278c5b56-0ca6-46d0-a487-9403b61af08a