Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | Vol. 19, nr 1 | 153--165
Tytuł artykułu

Embedding theorems for holomorphic functions of several complex variables

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Many authors studied families XG of complex valued functions, which are holomorphic in bounded complete n-circular domains G⊂Cn and fulfill some geometric conditions. The above functions were applied later to research families of locally biholomorphic mappings in Cn. In this paper we consider a problem of inclusions between a few of such families XG and families MKG, k=2, 3, …, which are defined by applying a function decomposition with respect to the group of kth roots of unity.
Wydawca

Rocznik
Strony
153--165
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
autor
  • Institute of Mathematics, Lodz University of Technology, ul. Wólczańska 215, 90-924 Łódź, Poland, renata.dlugosz@p.lodz.pl
Bibliografia
  • [1] J. W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. Math. 17 (1915/16), 12-22.
  • [2] I. I. Bavrin, A Class of Regular Bounded Functions in the Case of Several Complex Variables and Extreme Problems in That Class (in Russian), Moskov Obi. Ped. Inst., Moscov, 1976.
  • [3] R. Długosz and E. Leś, Embedding theorems and extreme problems for holomorphic functions on circular domains of Cn, Complex Van Elliptic Equ., to appear.
  • [4] K. Dobrowolska and P. Liczberski, On some differential inequalities for holomorphic functions of many variables, Demonstratio Math. 14 (1981), 383-398.
  • [5] I. Dziubiński and R. Sitarski, On classes of holomorphic functions of many variables starlike and convex on some hypersurfaces, Demonstratio Math. 13 (1980), 619-632.
  • [6] S. Fukui, On the estimates of coefficients of analytic functions, Sci. Rep. Tokyo Kyoiku Daigaku 10 (1969), 216-218.
  • [7] H. Hamada, T. Honda and G. Kohr, Parabolic starlike mappings in several complex variables, Manuscripta Math. 123 (2007), 301-324.
  • [8] T. Higuchi, On coefficients of holomorphic functions of several complex variables, Sci. Rep. Tokyo Kyoiku Daigaku 8 (1965), 251-258.
  • [9] Z. Jakubowski and J. Kamiński, On some classes of Mocanu-Bazylevich functions, Acta Univ. Lodz, Folia Math. 5 (1992), 39-62.
  • [10] W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 1 (1952), 169-185.
  • [11] Z. Lewandowski, Sur l’identité decertaines classes de fonctions univalentes I, II, Ann. Univ. Mariae Curie-Skłodowska, Sect A 12 (1958), 131-146,14 (1960), 19-16.
  • [12] P. Liczberski, On the subordination of holomorphic mappings in Cn, Demonstratio Math. 2 (1986), 293-301.
  • [13] P. Liczberski and J. Połubiński, On (j,k)-symmetrical functions, Math. Bohem. 120 (1995), 13-28.
  • [14] P. Liczberski and J. Połubiński, Symmetrical series expansion of complex valued functions, New Zealand J. Math. 27 (1998), 245-253.
  • [15] P. Liczberski and J. Połubiński, A uniqueness theorem of Cartan-Gutzmer type for holomorphic mappings in Cn, Ann. Polon. Math. 79 (2002), 121-127.
  • [16] P. Liczberski and J. Połubiński, Functions (j,k)-symmetrical and functional equations with iterates of the unknown function, Publ. Math. Debrecen 60 (2002), 291-305.
  • [17] A. Marchlewska, On certain subclasses of Bawrin’s families of holomorphic maps of two complex variables, in: Proceedings of the Fifth Environmental Mathematical Conference (Rzeszów-Lublin-Lesko 1998), Press of Catholic University of Lublin, Lublin (1999), 99-106.
  • [18] A. Marchlewska, Ona generalization of close-to-convexity for complex holomorphic functions in Cn, Demonstratio Math. 4 (2005), 847-856.
  • [19] Y. Michiwaki, Note on some coefficients in a starlike functions of two complex variables, Res. Rep. Nagaoka Tech. College 1 (1963), 151-153.
  • [20] I. R. Nezhmetdinov and S. Ponnusamy, On the class of univalent functions starlike with respect to N-symmetric points, Hokkaido Math. J. 31 (2002), 61-77.
  • [21] J. A. Pfaltzgraff and T. J. Suffridge, An extension theorem and linear invariant families generated by starlike maps, Ann. UMCS Sect. Math. 53 (1999), 193-207.
  • [22] C. Pommerenke, Univalent Functions, Vandenhoeck and Ruprecht, Göttingen, 1975.
  • [23] K. Sakaguchi, On certain univalent mapping, J. Math. Soc. Japan 11 (1959), 72-75.
  • [24] J. Stankiewicz, Functions of two complex variables regular in half-space, Folia Sci. Univ. Techn. Rzeszów Math. 19 (1996), 107-116.
  • [25] E. Study, Vorlesungen über ausgewählte Gegenstände der Geometrie, Teubner, Heft 2, Leipzig, 1913.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-278c035d-0d27-4280-b61e-57ee64fb59d7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.