Czasopismo
2018
|
Vol. 115, iss. 3
|
173--186
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Wpływ zagłębienia niecki wypadowej na zmiany charakterystyki odskoku hydraulicznego
Języki publikacji
Abstrakty
In this article, the results of computational fluid dynamic (CFD) modelling of the hydraulic jump conditions occurring in the experimental prismatic rectangular stilling basin with sudden crosswise expansion are presented. The FLOW 3D software program was used to numerically solve Reynolds Navier-Stokes (RANS) equations with the application of the k-ε turbulence model. The influence of the depth magnitude of the stilling basin and the ending sill installation on the hydraulic jump turbulent characteristics and submergence condition changes was investigated. Based on the results of the numerical modelling, it was found that various spatial flow processes contribute to the submergence condition of the hydraulic jump. These processes include: crosswise flow expansion within the stilling basin; local tail water surface level increase and total head loss due to vertical flow contraction; installation of the additional terminal sill. This contribution to the submergence condition allows a reduction in the required depth of the stilling basin, calculated on the basis of a one-dimensional simplified approach without consideration to the spatial characteristic of the hydraulic jump.
W artykule przedstawiono przykład zastosowania techniki CFD (Numeryczna Mechanika Płynów) do modelowania warunków wystąpienia odskoku hydraulicznego w eksperymentalnej pryzmatycznej niecce wypadowej z nagłym poszerzeniem. W celu rozwiązania równań Reynolds Navier-Stokes (RANS) wraz z modelem turbulencji typu k-ε użyto programu FLOW 3D. Przedmiotem badania był wpływ głębokości niecki wypadowej i wysokości progu wylotowego na zmianę charakterystyki przepływu turbulentnego i warunki zatopienia odskoku. Na podstawie uzyskanych wyników modelowania stwierdzono, iż przestrzenne procesy przepływu, takie jak: poprzeczna ekspansja strumienia w niecce wypadowej, lokalne podniesienie poziomu zwierciadła wody dolnej na skutek kontrakcji pionowej przepływu w przekroju wyjściowym z niecki, instalacja progu wylotowego mogą przyczynić się w istotny sposób do zatopienia odskoku hydraulicznego, a tym samym pozwalają na redukcję wymaganej głębokości niecki wypadowej obliczanej na podstawie uproszczonej jednowymiarowej analizy przepływu bez uwzględnienia przestrzennego charakteru badanego odskoku hydraulicznego.
Czasopismo
Rocznik
Tom
Strony
173--186
Opis fizyczny
Bibliogr. 16 poz., il., wz., wykr., tab.
Twórcy
autor
- Institute of Hydraulic Engineering and Water Management, Department of Hydraulics and Hydrology, Cracow University of Technology, tsiuta@iigw.pl
Bibliografia
- [1] Flow Science, Inc., 2014, FLOW-3D User Manual, Release 11.0.3, USA 2014.
- [2] Matin M.A., Hasan M, Islam M.R., Experiment on hydraulic jump in sudden expansion in a sloping rectangular channel, Journal of Civil Engineering (IEB), 36(2)/2008, 65–77.
- [3] Urbański J., Siwicki P., Zastosowanie programu CFD fluent do obliczeń charakterystyk turbulencji strumienia w dolnym stanowisku jazu, Infrastruktura i Ekologia Terenów Wiejskich, No. 2007/4(2).
- [4] Gandhi S., Characteristics of Hydraulic Jump, International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering, Vol. 8, No. 4/2014.
- [5] Tannehill J.C., Anderson D.A., Pletcher R.H., Computational Fluid Mechanics and Heat Transfer, 2nd Ed., Taylor & Francis, USA 1997.
- [6] Bayon-Barrachina A., Amparo Lopez-Jimenez P., Numerical analysis of hydraulic jumps using OpenFOAM, Journal of Hydroinformatics, 17(4)/2015, 662–678.
- [7] Carvalho R.F., Lemos C.M., Ramos C.M., Numerical computation of the flow in hydraulic jump stilling basin, Journal of Hydraulic Research 46(6)/2008, 739–752.
- [8] Chanson H., Gualtieri C., Similitude and scale effects of air entrainment in hydraulic jump, Journal of Hydraulic Research 46(1)/2008, 35–44.
- [9] Mortensen J.D., Barfuss S.L., Johnson M.C., Scale effects of air entrainment by hydraulic jumps within closed conduits, Journal of Hydraulic Research, Vol. 49/2011, 90–95.
- [10] Ead S. A., Rajaratnam N., Hydraulic jumps on corrugated beds, Journal of Hydraulic Engineering, ASCE, Vol. 128, No. 7/2002, 656–663.
- [11] Abbaspour A., Farsadizadeh D., Dalir A H., Sadraddini A.A., Numerical study of hydraulic jumps on corrugated beds using turbulence models, Turk. J. Eng. Environ. Sci., 33(1)/2009, 61–72.
- [12] Amorim Jose Carlos C., Rodrigues Cavalcanti R., Marques Marcelo G.A., Numerical and Experimental Study of Hydraulic Jump Stilling Basin, Advances in Hydro-Science and Engineering, Vol. VI/2007.
- [13] Peterka A.J., Hydraulic design of stilling basins and energy dissipators, Engineering Monograph 25, U.S. Bureau of Reclamation 1963.
- [14] Valero D., Bung D., Crookston B., Matos J., Numerical investigation of USBR type III stilling basin performance downstream of smooth and stepped spillways, [in:] B. Crookston & B. Tullis (eds.), Hydraulic Structures and Water System Management, 6th IAHR International Symposium on Hydraulic Structures, Portland, June 2016, 652–663.
- [15] Babaali H., Shamsai A., Vosoughifar H., Computational modeling of the hydraulic jump in the stilling basin with convergence walls using CFD codes, Arabian Journal for Science and Engineering., 40(2)/2015, 381–395.
- [16] Ven Te Chow, Open-Channel Hydraulics, McGraw-Hill, New York 1959.
Uwagi
EN
Section "Environmental Engineering"
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-27427c2c-9a76-4872-98ba-8a388f45927d