Warianty tytułu
Oznaczanie śladu węglowego jako strategiczny element środowiskowej oceny systemów rolniczych
Języki publikacji
Abstrakty
The aim of the study was to assess the potential use of the carbon footprint for the environmental evaluation of agricultural systems. Carbon footprint analysis in agriculture has a strategic dimension in terms of sustainable food production. Reducing the negative impact of agriculture on climate change is a key element of many quality management systems and is included in the legislation of many countries. One of the challenges in calculating the carbon footprint is the lack of clear methodologies for determination of the greenhouse gas (GHG) emissions at this stage. Normative documents highlight the need to consider all areas of GHG emissions, but in practice, this is exceedingly difficult due to the specific characteristics of plant production, which takes place under variable conditions related to soil type, its properties, chemical composition, climate, and production technology. Based on a review of the scientific literature, it was concluded that the carbon footprint studies of specific agricultural systems and evaluations of technology improvements (implementing actions to compensate for anthropogenic pressure) should be conducted within an individual system boundary. The system boundary should be developed based on the process map created in accordance with the guidelines of ISO 31000:2018. Most of the input data used in the calculations must be standardized due to the range of parameters dependent on the natural, geographical, and infrastructural conditions of the production location.
Celem pracy była ocena potencjału wykorzystania śladu węglowego do środowiskowej oceny systemów rolniczych. Badanie śladu węglowego w rolnictwie ma strategiczny wymiar w zakresie zrównoważonego rozwoju produkcji żywności. Ograniczenie negatywnego wpływu rolnictwa na zmiany klimatyczne są ważnym elementem wielu systemów zarządzania jakością oraz wpisywane są w prawodawstwo wielu krajów. Problemem związanym z obliczaniem śladu węglowego jest na obecnym etapie brak jednoznacznych metodologii obliczania wielkości emisji gazów cieplarnianych (GHG). Dokumenty normatywne wskazują na konieczność uwzględnienia wszystkich obszarów emisji gazów cieplarnianych, jednakże w praktyce jest to bardzo trudne ze względu na specyfikę produkcji roślinnej, która jest prowadzona w zmiennych warunkach związanych z rodzajem gleby, jej właściwościami, składem chemicznym, klimatem czy technologią produkcji. W oparciu o przegląd literatury naukowej stwierdzono, że badania śladu węglowego określonych systemów rolniczych oraz ewaluacja doskonalenia technologii produkcji (wdrażanie działań kompensujących anropopresję) powinna być prowadzona w obrębie indywidualnej granicy systemu. Granica systemu powinna być opracowywana w oparciu o stworzoną mapę procesów zgodnie z wytycznymi normy ISO 31000:2018. Większość danych wejściowych wykorzystywanych w obliczeniach musi być unifikowana ze względu na występowanie szeregu parametrów zależnych od przyrodniczych, geograficznych i infrastrukturalnych uwarunkowań miejsca prowadzenia produkcji.
Czasopismo
Rocznik
Tom
Strony
235--250
Opis fizyczny
Bibliogr. 78 poz., tab.
Twórcy
autor
- Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, Mickiewicza 21, 30-120 Krakow, Poland, marcin.niemiec@urk.edu.pl
autor
- Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, Mickiewicza 21, 30-120 Krakow, Poland, monika.komorowska@urk.edu.pl
autor
- Department of Biosystem Engineering, Alaaddin Keykubat University, Alanya Kestel, Merines Cd., 07450 Turkey, atilgan.atilgan@alanya.edu.tr
autor
- Tashkent State Agrarian University, Universitet Ko'chasi 2, Тоshkent, Toshkent, Uzbekistan, a.abduvasikov@tdau.uz
Bibliografia
- Abbas, F., Al-Otoom, A., Al-Naemi, S., Ashraf, A., & Mahasneh, H. (2024). Experimental and life cycle assessments of tomato (Solanum lycopersicum) cultivation under controlled environment agriculture. Journal of Agriculture and Food Research, 18, 101266. https://doi.org/10.1016/j.jafr.2024.101266.
- Alexandratos, N., & Bruinsma, J. (2012). World agriculture towards 2030/2050: the 2012 revision.
- Anand, A., Kumar, V., & Kaushal, P. (2022). Biochar and its twin benefits: Crop residue management and climate change mitigation in India. Renewable and Sustainable Energy Reviews, 156, 111959. https://doi.org/10.1016/j.rser.2021.111959.
- Audsley, E., K. Stacey, K., Parsons, D.J., and Williams A.G. (2009). Estimation of the greenhouse gas emissions from agricultural pesticide manufacture and use. http://dspace.lib.cranfield.ac.uk/handle/1826/3913 (accessed at 24 September 2024).
- Bains, A., Sridhar, K., Dhull, S. B., Chawla, P., Sharma, M., Sarangi, P. K., & Gupta, V. K. (2024). Circular Bioeconomy in Carbon Footprint Components of Nonthermal Processing Technologies Towards Sustainable Food System: A Review. Trends in Food Science & Technology, 149,104520 https://doi.org/10.1016/j.tifs.2024.104520.
- Braglia, M., Di Paco, F., Gabbrielli, R., Grassi, C., & Marrazzini, L. (2024). Greenhouse gas Emissions Deployment (GED): A novel Lean method for mitigating greenhouse gas emissions in industrial environment. Sustainable Production and Consumption, 48, 29-45. https://doi.org/10.1016/j.spc. 2024. 05.008.
- Chataut, G., Bhatta, B., Joshi, D., Subedi, K., & Kafle, K. (2023). Greenhouse gases emission from agricultural soil: A review. Journal of Agriculture and Food Research, 11, 100533. https://doi.org/10.1016/j.jafr.2023.100533.
- Chen, J., Wang, S., Zhong, H., Chen, B., & Fang, D. (2024). Assessing agricultural greenhouse gas emission mitigation by scaling up farm size: An empirical analysis based on rural household survey data. Science of The Total Environment, 933, 173077. https://doi.org/10.1016/j.scitotenv.2024. 173077.
- Chen, R., Shen, W., Chen, Z., Guo, J., Yang, L., Fei, G., ... & Wang, L. (2024). Modulation of soil nitrous oxide emissions and nitrogen leaching by hillslope hydrological processes. Science of The Total Environment, 951, 175637. https://doi.org/10.1016/j.scitotenv.2024.175637.
- Cordeiro, E. U., Arenas-Calle, L., Woolf, D., Sherpa, S., Poonia, S., Kritee, K., ... & McDonald, A. (2024). The fate of rice crop residues and context-dependent greenhouse gas emissions: Modelbased insights from Eastern India. Journal of Cleaner Production, 435, 140240. https://doi.org/10.1016/j.jclepro.2023.140240.
- Costantini, M., & Bacenetti, J. (2021). Soybean and maize cultivation in South America: Environmental comparison of different cropping systems. Cleaner Environmental Systems, 2, 100017. https://doi.org/10.1016/j.cesys.2021.100017.
- Crippa, M., Solazzo, E., Guizzardi, D., Monforti-Ferrario, F., Tubiello, F.N. & Leip, A. (2021). Food systems are responsible for a third of global anthropogenic GHG emissions. Nature Food, 2, 198-209. https://doi.org/10.1038/s43016-021-00225-9.
- Cui, H., Luo, Y., Chen, J., Jin, M., Li, Y., & Wang, Z. (2022). Straw return strategies to improve soil properties and crop productivity in a winter wheat-summer maize cropping system. European Journal of Agronomy, 133, 126436. https://doi.org/10.1016/j.eja.2021.126436.
- Deng, Z., Ren, X., Han, J., Cui, K., Han, K., Yue, Q., ... & Peng, S. (2024). Identifying a sustainable rice-based cropping system via on-farm evaluation of grain yield, carbon sequestration capacity and carbon footprints in Central China. Field Crops Research, 316, 109510. https://doi.org/10.1016/j.fcr.2024.109510.
- Deshpande, M. V., Kumar, N., Pillai, D., Krishna, V. V., & Jain, M. (2023). Greenhouse gas emissions from agricultural residue burning have increased by 75% since 2011 across India. Science of the Total Environment, 904, 166944. https://doi.org/10.1016/j.scitotenv.2023.166944.
- Devapriya, P., Ferrell, W., & Geismar, N. (2017). Integrated production and distribution scheduling with a perishable product. European Journal of Operational Research, 259(3), 906-916. https://doi.org/10.1016/j.ejor.2016.09.019.
- Du, Y., Lu, Y., Guo, S., Wang, R., Song, X., & Ju, X. (2024). Enhanced efficiency nitrogen fertilizers (EENFs) can reduce nitrous oxide emissions and maintain high grain yields in a rain-fed spring maize cropping system. Field Crops Research, 312, 109408. https://doi.org/10.1016/j.fcr.2024. 109408.
- Dziuba, K., Todorow, M., Góra, R., Gabryszewska, M., Kijeńska, M., Gworek, B., ... & Tokarz, L. (2018). Use of carbon footprint to assess CO2 and N2O emissions during the production of nitrogen fertilizers. Desalination and Water Treatment, 117, 267-271. https://doi.org/10.5004/dwt.2018. 22498.
- EPA United States Environmental Protection Agency (2016) Greenhouse Gas Inventory Guidance Direct Emissions from Mobile Combustion Sources, 27.
- (EU) 2018/842. Rozporządzenie Parlamentu Europejskiego i Rady zmieniające rozporządzenie (EU) 2018/842 w sprawie wiążących rocznych redukcji emisji gazów cieplarnianych przez państwa członkowskie od 2021 r. do 2030 r. przyczyniających się do działań na rzecz klimatu w celu wywiązania się z zobowiązań wynikających z porozumienia paryskiego oraz zmieniające rozporządzenie (UE) 2018/1999.
- European Environemnt Agency. Greenhouse gas emissions from agriculture in Europe Published 24 Oct 2023.
- FAO. 2017. Global database of GHG emissions related to feed crops: Methodology. Version 1. Livestock Environmental Assessment and Performance Partnership. FAO, Rome, Italy.
- Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., ... & Van Dorland, R. (2007). Changes in atmospheric constituents and in radiative forcing. In Climate Change 2007, The Physical Science Basis; Cambridge University Press: Cambridge, UK, pp. 129-234.
- Gan, Y., Liang, C., Wang, X., & McConkey, B. (2011). Lowering carbon footprint of durum wheat by diversifying cropping systems. Field Crops Research, 122(3), 199-206. https://doi.org/10.1016/ j.fcr.2011.03.020.
- Goglio, P., Williams, A. G., Balta-Ozkan, N., Harris, N. R., Williamson, P., Huisingh, D., ... & Tavoni, M. (2020). Advances and challenges of life cycle assessment (LCA) of greenhouse gas removal technologies to fight climate changes. Journal of Cleaner Production, 244, 118896. https://doi.org/10.1016/j.jclepro.2019.118896.
- Habib, M., Singh, S., Bist, Y., Kumar, Y., Jan, K., Bashir, K., ... & Saxena, D. C. (2024). Carbon Pricing and the Food System: Implications for Sustainability and Equity. Trends in Food Science & Technology, 150, 104577. https://doi.org/10.1016/j.tifs.2024.104577.
- He, H., Li, D., Wu, Z., Wu, Z., Hu, Z., & Yang, S. (2024). Assessment of the straw and biochar application on greenhouse gas emissions and yield in paddy fields under intermittent and controlled irrigation patterns. Agriculture, Ecosystems & Environment, 359, 108745. https://doi.org/10.1016/j.agee.2023.108745.
- Hoffmann, S., Lasarov, W., Reimers, H., & Trabandt, M. (2024). Carbon footprint tracking apps. Does feedback help reduce carbon emissions? Journal of Cleaner Production, 434, 139981. https://doi.org/10.1016/j.jclepro.2023.139981.
- Hu, X., Dong, C., & Zhang, Y. (2024). Dynamic evolution of the ecological footprint of arable land in the Yellow and Huaihai Main grain producing area based on structural equation modeling and analysis of driving factors. Ecological Informatics, 82, 102720. https://doi.org/10.1016/j.ecoinf.2024.102720.
- Incrocci, L., Thompson, R. B., Fernandez-Fernandez, M. D., De Pascale, S., Pardossi, A., Stanghellini, C., ... & Gallardo, M. (2020). Irrigation management of European greenhouse vegetable crops. Agricultural Water Management, 242, 106393. https://doi.org/10.1016/j.agwat.2020.106393.
- IPCC. (2006). IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4:Agriculture, Forestry and Other Land Use. Intergovernmental Panel on Climate Change.
- ISO 14040. Environmental Management-Life Cycle Assessment-Principles and Framework; ISO Geneva, Switzerland, 2006.
- ISO 14040. Environmental management-life cycle assessment-principles and framework. Geneva Switzerland.
- ISO 14044 Environmental management -Life cycle assessment - Requirements and guidelines.
- ISO 14044. Environmental Management - Life Cycle Assessment e Requirements and Guidelines. ISO, Geneva 2006.
- ISO 14064-1:2018. Specification with guidance at the organization level for quantification and reporting of greenhouse gas emissions and removals.
- ISO 31000: 2018. Risk management, Geneva, Switzerland, 2018.
- Jensen, L., & Scalamandrè, C. (2023). European Parliamentary Research Service. PE 739.327.
- Kapoor, S., & Pal, B. D. (2024). Impact of adoption of climate smart agriculture practices on farmer's income in semi-arid regions of Karnataka. Agricultural Systems, 221, 104135. https://doi.org/10.1016/j.agsy.2024.104135.
- Kapusta-Duch, J., Szeląg-Sikora, A., Sikora, J., Niemiec, M., Gródek-Szostak, Z., Kuboń, M., ... & Borczak, B. (2019). Health-promoting properties of fresh and processed purple cauliflower. Sustainability, 11(15), 4008. https://doi.org/10.3390/su11154008.
- Karaşan, A., Gündoğdu, F. K., Işık, G., Kaya, İ., & İlbahar, E. (2024). Assessment of governmental strategies for sustainable environment regarding greenhouse gas emission reduction under uncertainty. Journal of Environmental Management, 349, 119577. https://doi.org/10.1016/j.jenvman. 2023.119577.
- Komorowska, M., Niemiec, M., Sikora, J., Gródek-Szostak, Z., Gurgulu, H., Chowaniak, M., ... & Neuberger, P. (2023). Evaluation of sheep wool as a substrate for hydroponic cucumber cultivation. Agriculture, 13(3), 554. https://doi.org/10.3390/agriculture13030554.
- Komorowska, M., Niemiec, M., Sikora, J., Suder, M., Gródek-Szostak, Z., Atilgan, A., ... & Duda, J. (2024). Strategies for managing corn crop residue in the context of greenhouse gas emissions. Environmental Science and Pollution Research, 1-17. https://doi.org/10.21203/rs.3.rs-4018711/v1.
- Kool, A., Marinussen, M., & Blonk, H. (2012). LCI data for the calculation tool Feedprint for greenhouse gas emissions of feed production and utilization. GHG Emissions of N, P and K fertiliser production, 20.
- Kuboń, M., Niemiec, M., Klimek-Kopyra, A., Gliniak, M., Sikora, J., Sadowska, U., ... & Wichliński, M. (2021). Assessment of Greenhouse Gas Emissions in Soybean Cultivation Fertilized with Biochar from Various Utility Plants. Agronomy, 11(11), 2224. https://doi.org/10.3390/agronomy11112224.
- Kumar, R., Karmakar, S., Minz, A., Singh, J., Kumar, A., & Kumar, A. (2021). Assessment of greenhouse gases emission in maize-wheat cropping system under varied N fertilizer application using cool farm tool. Frontiers in Environmental Science, 9, 710108. https://doi.org/10.3389/fenvs.2021.710108.
- Lanz, B., Dietz, S., & Swanson, T. (2018a). The expansion of modern agriculture and global biodiversity decline: an integrated assessment. Ecological Economics, 144, 260-277. https://doi.org/ 10.1016/j.ecolecon.2017.07.018.
- Lanz, B., Dietz, S., & Swanson, T. (2018b). Global economic growth and agricultural land conversion under uncertain productivity improvements in agriculture. American Journal of Agricultural Economics, 100(2), 545-569. https://doi.org/10.1093/ajae/aax078.
- Latawiec, A. E., Koryś, A., Koryś, K. A., Kuboń, M., Sadowska, U., Gliniak, M., ... & Medeiros, B. (2021). Economic analysis of biochar use in soybean production in Poland. Agronomy, 11(11), 2108. https://doi.org/10.3390/agronomy11112108.
- Li, J., Sun, W., Lichtfouse, E., Maurer, C., & Liu, H. (2024). Life cycle assessment of biochar for sustainable agricultural application: A review. Science of The Total Environment, 175448. https://doi.org/10.1016/j.scitotenv.2024.175448.
- Liang, Z., Cao, B., Jiao, Y., Liu, C., Li, X., Meng, X., ... & Tian, X. (2022). Effect of the combined addition of mineral nitrogen and crop residue on soil respiration, organic carbon sequestration, and exogenous nitrogen in stable organic matter. Applied Soil Ecology, 171, 104324. https://doi.org/10.1016/j.apsoil.2021.104324.
- Liu, L., Hu, X., Li, L., Sun, Z., & Zhang, Q. (2024). Understanding China's agricultural non-carbondioxide greenhouse gas emissions: Subnational insights and global trade dynamics. Environmental Impact Assessment Review, 106, 107487. https://doi.org/10.1016/j.eiar.2024.107487.
- Liu, Q. Y., Xu, C. T., Han, S. W., Li, X. X., Kan, Z. R., Zhao, X., & Zhang, H. L. (2021). Strategic tillage achieves lower carbon footprints with higher carbon accumulation and grain yield in a wheatmaize cropping system. Science of the Total Environment, 798, 149220. https://doi.org/10.1016/j.scitotenv.2021.149220.
- Mdhluli, F. T., & Harding, K. G. (2021). Comparative life-cycle assessment of maize cobs, maize stover and wheat stalks for the production of electricity through gasification vs traditional coal power electricity in South Africa. Cleaner Environmental Systems, 3, 100046. https://doi.org/10.1016/j.cesys.2021.100046.
- Moult, J. A., Allan, S. R., Hewitt, C. N., & Berners-Lee, M. (2018). Greenhouse gas emissions of food waste disposal options for UK retailers. Food Policy, 77, 50-58. https://doi.org/10.1016/j.foodpol.2018.04.003.
- Niemiec, M., Komorowska, M., Szeląg-Sikora, A., Sikora, J., Kuboń, M., Gródek-Szostak, Z., & Kapusta-Duch, J. (2019). Risk assessment for social practices in small vegetable farms in Poland as a tool for the optimization of quality management systems. Sustainability, 11(14), 3913. https://doi.org/10.3390/su11143913.
- Nordahl, S. L., Hanes, R. J., Mayfield, K. K., Myers, C., Baker, S. E., & Scown, C. D. (2024). Carbon accounting for carbon dioxide removal. One Earth, 7(9), 1494-1500. https://doi.org/10.1016/j.oneear.2024.08.012.
- Novoa, R. S., & Tejeda, H. R. (2006). Evaluation of the N2O emissions from N in plant residues as affected by environmental and management factors. Nutrient Cycling in Agroecosystems, 75(1), 29-46.
- Nsabiyeze, A., Ma, R., Li, J., Zhao, Q., & Zhang, M. (2024). Mitigating greenhouse gas emissions from sheep production system in China: An integrated approach of data envelopment analysis and life cycle assessment. Resources, Conservation and Recycling, 207, 107695. https://doi.org/10.1016/j.resconrec.2024.107695.
- Pareja-Sánchez, E., Cantero-Martínez, C., Álvaro-Fuentes, J., & Plaza-Bonilla, D. (2019). Tillage and nitrogen fertilization in irrigated maize: key practices to reduce soil CO2 and CH4 emissions. Soil and Tillage Research, 191, 29-36. https://doi.org/10.1016/j.still.2019.03.007.
- Pramanick, B., Kumar, M., Naik, B. M., Singh, S. K., Kumar, M., & Singh, S. V. (2024). Soil carbonnutrient cycling, energetics, and carbon footprint in calcareous soils with adoption of long-term conservation tillage practices and cropping systems diversification. Science of The Total Environment, 912, 169421. https://doi.org/10.1016/j.scitotenv.2023.169421.
- Qi, J. Y., Yang, S. T., Xue, J. F., Liu, C. X., Du, T. Q., Hao, J. P., & Cui, F. Z. (2018). Response of carbon footprint of spring maize production to cultivation patterns in the Loess Plateau, China. Journal of Cleaner Production, 187, 525-536. https://doi.org/10.1016/j.jclepro.2018.02.184.
- Rashidov, N., Chowaniak, M., Niemiec, M., Mamurovich, G. S., Gufronovich, M. J., Gródek-Szostak, Z., ... & Komorowska, M. (2021). Assessment of the multiannual impact of the grape training system on GHG emissions in north Tajikistan. Energies, 14(19), 6160. https://doi.org/ 10.3390/en14196160.
- Šarauskis, E., Masilionytė, L., Juknevičius, D., Buragienė, S., & Kriaučiūnienė, Z. (2019). Energy use efficiency, GHG emissions, and cost-effectiveness of organic and sustainable fertilisation. Energy, 172, 1151-1160. https://doi.org/10.1016/j.energy.2019.02.067.
- Shabir, I., Dash, K. K., Dar, A. H., Pandey, V. K., Fayaz, U., Srivastava, S., & Nisha, R. (2023). Carbon footprints evaluation for sustainable food processing system development: A comprehensive review. Future Foods, 7, 100215. https://doi.org/10.1016/j.fufo.2023.100215.
- Shao, H. (2024). Agricultural greenhouse gas emissions, fertilizer consumption, and technological innovation: A comprehensive quantile analysis. Science of The Total Environment, 926, 171979. https://doi.org/10.1016/j.scitotenv.2024.171979.
- Taft, H. E., Cross, P. A., Hastings, A., Yeluripati, J., & Jones, D. L. (2019). Estimating greenhouse gases emissions from horticultural peat soils using a DNDC modelling approach. Journal of environmental management, 233, 681-694. https://doi.org/10.1016/j.jenvman.2018.11.113.
- Thiagarajan, A., Liang, C., MacDonald, J. D., Smith, W., VandenBygaart, A. J., Grant, B., ... & Fan, J. (2022). Prospects and challenges in the use of models to estimate the influence of crop residue input on soil organic carbon in long-term experiments in Canada. Geoderma Regional, 30, e00534. https://doi.org/10.1016/j.geodrs.2022.e00534.
- TS-EN ISO 14067 Greenhouse Gases -Carbon Footprint of Products- Requirements. and Guidelines for Quantification and Communication. International Organization for Standardization, Geneva.
- Tubiello, F. N., Karl, K., Flammini, A., Gütschow, J., Obli-Laryea, G., Conchedda, G., ... & Torero, M. (2022). Pre-and post-production processes increasingly dominate greenhouse gas emissions from agri-food systems. Earth System Science Data, 14(4), 1795-1809.. https://doi.org/10.5194/ essd-14-1795-2022.
- Tubiello, F. N., Rosenzweig, C., Conchedda, G., Karl, K., Gütschow, J., Xueyao, P., ... & Sandalow, D. (2021). Greenhouse gas emissions from food systems: building the evidence base. Environmental Research Letters, 16(6), 065007.
- Wang, C., Gao, Z., Zhao, J., Feng, Y., Laraib, I., Shang, M., ... & Chu, Q. (2022). Irrigation-induced hydrothermal variation affects greenhouse gas emissions and crop production. Agricultural Water Management, 260, 107331.
- World Population Prospects 2024: Summary of Results.
- Wu, Y., Yan, S., Fan, J., Zhang, F., Xiang, Y., Zheng, J., & Guo, J. (2021). Responses of growth, fruit yield, quality and water productivity of greenhouse tomato to deficit drip irrigation. Scientia Horticulturae, 275, 109710. https://doi.org/10.1016/j.scienta.2020.109710.
- Yang, Y., Liang, S., Yang, Y., Xie, G. H., & Zhao, W. (2022). Spatial disparity of life-cycle greenhouse gas emissions from corn straw-based bioenergy production in China. Applied Energy, 305, 117854. https://doi.org/10.1016/j.apenergy.2021.117854.
- Zhang, H., Liang, Q., Peng, Z., Zhao, Y., Tan, Y., Zhang, X., & Bol, R. (2023). Response of greenhouse gases emissions and yields to irrigation and straw practices in wheat-maize cropping system. Agricultural Water Management, 282, 108281. https://doi.org/10.1016/j.agwat.2023.108281.
- Zhang, Z., Wang, Z., Li, J., Liu, H., Wang, X., & Li, W. (2024). Comparison of water footprint and carbon footprint of corn, soybean, camelina, and canola for the preparation of sustainable aviation fuels in Gansu Province, China. Journal of Cleaner Production, 475, 143743. https://doi.org/10.1016/j.jclepro.2024.143743.
- Zhang, Z., Yu, Z., Zhang, Y., & Shi, Y. (2021). Finding the fertilization optimization to balance grain yield and soil greenhouse gas emissions under water-saving irrigation. Soil and Tillage Research, 214, 105167. https://doi.org/10.1016/j.still.2021.105167.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-273880c1-81f8-4f1f-8c0c-2f3fb79dcc33