Czasopismo
2013
|
Vol. 20, no. 4
|
309--323
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
The effective mechanical properties and the stress-strain relations of the eight types of the graphene allotropes are presented in this paper. Series of the tensile and shear tests are performed using the nonequilibrium molecular dynamics (NEMD) and the adaptive intermolecular reactive bond order (AIREBO) potential. The methodology of the investigation as well as obtained results are explained and discussed in detail. Where possible, the achieved results are compared with the data available in the scientific literature in order to validate our molecular dynamics models and simulations. In other cases, i.e., where only information about structural or electronic properties is available, presented results can complement the knowledge about these particular planar carbon networks.
Rocznik
Tom
Strony
309--323
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
autor
- AGH University of Science and Technology al. Mickiewicza 30, 30-059 Kraków, Poland, amrozek@agh.edu.pl
autor
- Institute of Fundamental Technological Research, Polish Academy of Sciences Pawińskiego 5B, 02-106 Warszawa, Poland
Bibliografia
- [1] M. Arroyo, T. Belytschko. Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy-Born rule. Physical Review B, 69(11): 115415, 2004.
- [2] R.H. Baughman, H. Eckhardt, M. Kertesz. Structure-property predictions for new planar forms of carbon: Layered phases containing sp2 and sp atoms. The Journal of Chemical Physics, 87(11): 6687–6699, 1987.
- [3] D.W. Brenner, O.A. Shenderova, J.A. Harrison, S.J. Stuart, B. Ni, S.B. Sinnott.A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. Journal of Physics: Condensed Matter, 14: 783–802, 2002.
- [4] M.J. Bucknum, E.A. Castro. The squarographites: A lesson in the chemical topology of tessellations in 2- and 3-dimensions. Solid State Sciences, 10: 1245–1251, 2007.
- [5] T. Burczyński, A. Mrozek, R. Górski, W. Kuś. The molecular statics coupled with the subregion boundary element method in multiscale analysis. International Journal for Multiscale Computational Engineering, 8(3): 319–330, 2010.
- [6] K. Chenoweth, A.C.T. van Duin, W.A. Goddard. ReaxFF Reactive force field for molecular dynamics simulations of hydrocarbon oxidation. Journal of Physical Chemistry, A(112): 1040–1053, 2008.
- [7] S.W. Cranford, M.J. Buehler. Mechanical properties of graphyne. Carbon, 49: 4111–4121, 2011.
- [8] S.W. Cranford, M.J. Buehler. Twisted and coiled ultralong multilayer graphene ribbons. Modelling and Simulation in Materials Science and Engineering, 19: 2011.
- [9] E. Duplock, M. Scheffler, P.J.D. Lindan. Hallmark of perfect graphene. Physical Review Letters, 92: 225502, 2004.
- [10] A.N. Enyashin, A.L. Ivanovskii. Graphene allotropes. Physica Status Solidi, 248(8): 1879–1883, 2011.
- [11] L.A. Girifalco, R.A. Lad. Energy of cohesion, compressibility, and the potential energy functions of the graphite system. The Journal of Chemical Physics, 25(4): 693–697, 1956.
- [12] M. Griebel, S. Knapek, G. Zumbusch. Numerical simulation in molecular dynamics: numerics, algorithms, parallelization, applications. Texts in Computational Science and Engineering, 5, Springer, 2007.
- [13] M.M. Haley. Synthesis and properties of annulenic subunits of graphyne and graphdiyne nanoarchitectures. Pure and Applied Chemistry, 80(3): 519–532, 2008.
- [14] D.J. Henry, G. Yiapanis, E. Evans, I. Yarovsky. Adhesion between graphite and modified polyester surfaces: a theoretical study. The Journal of Chemical Physics B, 109: 17224–17231, 2005.
- [15] W.G. Hoover. Canonical dynamics: Equilibrium phase-space distributions. Physical Review A, 31(3): 1695–1697, 1985.
- [16] W.K Liu, S. Jun, D. Qian. Computational nanomechanics of materials, Handbook of theoretical and computational nanotechnology. M. Rieth and W. Schommers [Eds.], American Scientific Publishers, Stevenson Ranch, 2005.
- [17] F. Liu, P. Ming, J. Li. Ab initio calculation of ideal strength and phonon instability of graphene under tension. Physical Review B, 86: 064120, 2007.
- [18] J.H. Los, L.M. Ghiringhelli, E.J. Meijer, A. Fasolino. Improved longrange reactive bond-order potential for carbon I. Construction, Physical Review B, 72(21): 214102, 2005.
- [19] K. Mylvaganam, L.C. Zhang. Nano-friction of some carbon allotropes. Journal of Computational and Theoretical Nanoscience, 7(10): 1–4, 2010.
- [20] A. Nakano. Parallel multilevel preconditioned conjugate-gradient approach to variable-charge molecular dynamics. Computer Physics Communications, 104: 59–69, 1997.
- [21] N. Narita, S. Nagai, S. Suzuki, K. Nakao. Electronic structure of three-dimensional graphyne. Physical Review B, 62(16): 11146–11151, 2000.
- [22] S. Nose. A unified formulation of the constant temperature molecular dynamics methods. The Journal of Chemical Physics, 81(1): 511–519, 1984.
- [23] Q. Peng, W. Ji, S. De. Mechanical properties of graphyne monolayers: a first-principles study. Physical Chemistry Chemical Physics, 14(38): 13385–13391, 2012.
- [24] Z. Qi, F. Zhao, X. Zhou, Z. Sun, H.S. Park, H. Wu. A molecular simulation analysis of producing monatomic carbon chains by stretching ultranarrow graphene nanoribbons. Nanotechnology, 21: 265702, 2010.
- [25] D. Rapaport. The art of molecular dynamics simulation. Cambridge University Press, UK, 2004.
- [26] A.K. Rappe, W.A. Goddard III. Charge equilibration for molecular dynamics simulations. The Journal of Chemical Physics, 95(8): 3358–3363, 1991.
- [27] A. Sakhaee-Pour. Elastic properties of single-layered graphene sheet. Solid State Communications, 149: 91–95, 2009.
- [28] F. Scarpa, S. Adhikari, A.S. Phani. Effective elastic mechanical properties of single layer graphene sheets. Nanotechnology, 20, 2009.
- [29] O. Shenderova, D. Brenner, R.S. Ruoff. Would diamond nanorods be stronger than fullerene nanotubes? NanoLetters, 3(6): 805–809, 2003.
- [30] S. Shengping, S.N. Atluri. Atomic-level stress calculation and continuum-molecular system equivalence. Computer Modeling in Engineering & Sciences, 6(1): 91–104, 2004.
- [31] S.J. Stuart, A.B. Tutein, J.A. Harrison. A reactive potential for hydrocarbons with intermolecular interactions. The Journal of Chemical Physics, 112(14): 6472–6486, 2000.
- [32] D.H. Tsai. The virial theorem and stress calculation in molecular dynamics. The Journal of Chemical Physics, 70(3): 1375–1382, 1979.
- [33] M.E. Tuckerman, Ch.J. Mundy, S. Balasubramanian, M.L. Klein. Modified nonequilibrium molecular dynamics for fluid flows with energy conservation, The Journal of Chemical Physics, 106(13): 5615–5621, 1997.
- [34] Z. Zhao, B. Xu, X-F. Zhou, L.-M. Wang, B. Wen, J. He, Z. Liu, H.-T. Wang, Y. Tian. Novel superhard carbon: C-centered orthorhombic C8. Physical Review Letters, 107: 215502, 2011.
- [35] M. Zhou. A new look at the atomic level virial stress: on continuum-molecular system equivalence. Proceedings of the Royal Society of London series A – Mathematical Physical and Engineering Sciences, 459(2037): 2347–2392, 2003.
- [36] H. Zhu, A.T. Balaban, D.J. Klein, T.P. Zivkovic. Conjugated-circuit computations on two-dimensional carbon networks. The Journal of Chemical Physics, 101(6): 5281–5292, 1994.
- [37] Q. Zhu, A.R. Oganov, M.A. Salvadó, P. Pertierra, A.O. Lyakhov. Denser than diamond: Ab initio search for superdense carbon allotropes. Physical Review B, 83: 193410, 2011.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-272d377a-ca19-431a-8840-593bc618923c