Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Summer Safety and Reliability Seminar 2023 | 47--57
Tytuł artykułu

Data processing for oil spill domain movement models

Treść / Zawartość
Warianty tytułu
Konferencja
17th Summer Safety & Reliability Seminars - SSARS 2023, 9-14 July 2023, Kraków, Poland
Języki publikacji
EN
Abstrakty
EN
This chapter reviews various data processing techniques for modelling the movement of oil spills, including data acquisition, quality control, and pre-processing. It highlights the importance of incorporating both physical and environmental factors such as wind, currents, and water temperature, in oil spill trajectory prediction models. It also discusses the challenges associated with data processing, including data availability and uncertainty. It emphasizes the significance of sound data processing practices to ensure effective response planning and mitigation efforts. Finally, by discussing the potential areas of improvement, and model assumptions and limitations, the chapter aims to inspire further research and development in the field, which can lead to constructing more accurate and reliable oil spill movement models.
Wydawca

Rocznik
Strony
47--57
Opis fizyczny
Bibliogr. 57 poz.
Twórcy
  • Centre of Informatics Tricity Academic Supercomputer and networK - CI TASK, Gdańsk, Poland, mdabrowski@task.gda.pl
Bibliografia
  • Aguilera, F., Méndez, J., Pásaro, E., & Laffon, B. 2010. Review on the effects of exposure to spilled oils on human health. Journal of Applied Toxicology 30(4), 291-301.
  • Asmussen, S. & Glynn, P.W. 2007. Stochastic simulation - algorithms and analysis. Stochastic modeling and applied probability. Springer Science & Business Media, New York.
  • Atlas, R.M. & Hazen, T.C. 2011. Oil biodegradation and bioremediation: A tale of the two worst spills in US history. Environmental Science & Technology 45(16), 6709-6715.
  • Bogalecka, M. 2020. Consequences of Maritime Critical Infrastructure Accidents. Environmental Impacts. Modeling - Identification - Prediction - Optimization - Mitigation. Elsevier, Amsterdam - Oxford - Cambridge.
  • Bogalecka, M. & Dąbrowska, E. 2023. Monte Carlo simulation approach to shipping accidents consequences assessment. Water 15, 1824.
  • Bogalecka, M. & Kołowrocki, K. 2018a. Prediction of critical infrastructure accident losses of chemical releases impacted by climate-weather change. Proceeding of 2018 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Institute of Electrical and Electronics Engineers, Bangkok, 788-792.
  • Bogalecka, M. & Kołowrocki K. 2018b. Minimization of critical infrastructure accident losses of chemical releases impacted by climate-weather change. Proceeding of 2018 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Institute of Electrical and Electronics Engineers, Bangkok, 1657-1661.
  • Das, T. & Goerlandt, F. 2022. Bayesian inference modeling to rank response technologies in arctic marine oil spills, Marine Pollution Bulletin, Part A, 185, 114203.
  • Dąbrowska, E. 2021. Conception of oil spill trajectory modelling: Karlskrona seaport area as an investigative example. Proceeding of 5th International Conference on System Reliability and Safety (ICSRS), Palermo, Italy, 307-311.
  • Dąbrowska, E. 2023. Oil discharge trajectory simulation at selected Baltic Sea waterway under variability of hydro-meteorological conditions. Water 15, 1957.
  • Dąbrowska, E. & Kołowrocki, K. 2019a. Monte Carlo simulation applied to oil spill domain at Gdynia port water area determination. Proceeding of IEEE, International Conference on Information and Digital Technologies (IDT), Žilina, Slovakia, 98-102.
  • Dąbrowska, E. & Kołowrocki, K. 2019b. Stochastic determination of oil spill domain at Gdynia port water area, Proceeding of International Conference on Information and Digital Technologies, Žilina, Slovakia, 92-97.
  • Dąbrowska, E. & Kołowrocki, K. 2020a. Monte Carlo simulation approach to determination of oil spill domains at port and sea waters areas, The International Journal on Marine Navigation and Safety of Sea Transportation 14(1), 59-64.
  • Dąbrowska, E. & Kołowrocki, K. 2020b. Probabilistic approach to determination of oil spill domains at port and sea water areas, The International Journal on Marine Navigation and Safety of Sea Transportation 2020, 14 (1), 51-58.
  • Dąbrowski, M. 2021. Analysis and comparison of data collection and processing tools for network devices MSc Thesis. Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology.
  • Dąbrowski M. 2022. Collecting and processing data of network devices impacting system load in terms of monitoring and warning system implementation. K. Kołowrocki et al. (Eds.), Safety and Reliability of Systems and Processes, Summer Safety and Reliability, Gdynia Maritime University, Gdynia, 65-77.
  • DeDominicis, M., Galmarini, S., Doucet, P.G., Solazzo, E., Cappelletti, A., Klaić, Z.B., Carmichael, G., Hirtl, M., Potempski, S., Trapp, W. & Vira, J., 2018. Model evaluation and ensemble modelling of surface-level ozone in Europe and North America in the context of AQMEII phase 2. Atmospheric Environment 178, 155-172.
  • Drews, T.O., Braatz, R.D., Alkire, R.C. 2003. Parameter sensitivity analysis of Monte Carlo simulations of copper electrodeposition with multiple additives. Journal of the Electrochemical Society 150(11), C807-C812.
  • EPA. 2021. Oil Spills Prevention and Preparedness Regulations, https://www.epa.gov/oil-spills-prevention-and-preparedness-regulations (accessed 29 May 2023).
  • EPA. 1999. Understanding Oil Spills and Oil Spill Response. Understanding Oil Spills in Freshwater Environments. EPA 540-K-99-007.
  • Fingas, M. & Brown, C.E. 2018. Review of oil spill remote sensing. Sensors 18(1), 91.
  • Fingas, M. 2013. The Basics of Oil Spill Cleanup. 3rd ed. CRC Press, Boca Raton - London - New York.
  • Fingas, M. 2016. Oil Spill Science and Technology, 2nd edn. Elsevier, Amsterdam - Boston - Heidelberg - London - New York - Oxford - Paris - San Diego - San Francisco - Singapore - Sydney - Tokyo.
  • French-McCay, D., Rowe, J., Sankaranarayanan, S., Kim, S. & Aurand, D. 2005. Use of probabilistic trajectory and impact modelling to assess consequences of oil spills with various response strategies. Proceeding of the 28th Arctic and Marine Oilspill Program (AMOP) Technical Seminar, Canada, 1134, 253-271.
  • Grabski, F. 2014. Semi-Markov Processes: Application in System Reliability and Maintenance. Elsevier, Amsterdam - Boston - Heidelberg - London - New York - Oxford - Paris - San Francisco - Sydney - Tokyo.
  • Hadzagic, M. & Michalska, H.A. 2011. Bayesian inference approach for batch trajectory estimation. Proceeding of 14th International Conference on Information Fusion, Chicago, USA, 1-8.
  • Harper, W.V., James, T.R., Eschenbach, T.G., & Slauson, L.V. 2008. Maximum likelihood estimation methodology comparison for the three-parameter weibull distribution with applications to offshore oil spills in the Gulf of Mexico. JSM Proceeding, Risk Analysis Section, American Statistical Association, Denver, CO. 1231-1238.
  • Harris, G. & Van Horn, R. 1996. Use of Monte Carlo Methods in Environmental Risk Assessment at the INEL: Application and Issues. Report, 1 June 1996,; Idaho Falls, Idaho. https://digital.library.unt.edu/ark:/67531/metadc671670/m1/1/ (accessed 26 Jun 2023)
  • Huby, A.A., Sagban, R. & Alubady, R. 2022. Oil spill detection based on machine learning and deep learning: A review. Proceeding of 5th International Conference on Engineering Technology and its Applications (IICETA), Al-Najaf, Iraq, 85-90.
  • Ivorra, B., Gomez, S., Carrera, J. & Ramos, A.M. 2021. A compositional Eulerian approach for modeling oil spills in the sea. Ocean Engineering 242, 110096.
  • Jiao, Z., Jia, G. & Cai, Y. 2019. A new approach to oil spill detection that combines deep learning with unmanned aerial vehicles. Computers & Industrial Engineering 135, 1300-1311.
  • Ju, X., Li, Z., Dong, B., Meng, X. & Huang, S. 2022. Mathematical physics modelling and prediction of oil spill trajectory for a Catenary Anchor Leg Mooring (CALM) System. Advances in Mathematical Physics, 2022, 3909552.
  • Kailkhura, B., Gallagher, B., Kim, S. Hiszpanski, A. & Han, T.Y.-J. 2019. Reliable and explainable machine-learning methods for accelerated material discovery. NPJ Computional Materials 5, 108.
  • Keramea, P., Spanoudaki, K., Zodiatis, G., Gikas, G. & Sylaios, G. 2021. Oil spill modeling: A critical review on current trends, perspectives, and challenges. Journal of Marine Science and Engineering 9(2), 181.
  • Kim, T., Yang, C.-S., Ouchi, K. & Oh, Y. 2013. Application of the method of moment and Monte-Carlo simulation to extract oil spill areas from synthetic aperture radar images, 2013 OCEANS – San Diego, 1-4.
  • Kołowrocki, K. & Soszyńska-Budny, J. 2011. Reliability and Safety of Complex Technical Systems and Processes: Modeling - Identification - Prediction - Optimization. Springer, London.
  • Kołowrocki, K. 2014. Reliability of Large and Complex Systems. Elsevier, Amsterdam - Boston - Heidelberg - London - New York - Oxford - Paris - San Diego - San Francisco - Singapore - Sydney - Tokyo.
  • Kołowrocki, K. & Kuligowska, E. 2018. Operation and climate-weather change impact on maritime ferry safety. S. Haugen et al. (Eds). Safety and Reliability - Safe Societies in a Changing World. CRC Press Taylor & Francis Group, London, 849-858.
  • Leigh, J.W. & Bryant, D. 2015. Monte Carlo strategies for selecting parameter values in simulation experiments. Systematic Biology 64(5), 741-751.
  • Madsen, M., Skov, H. & Potthoff, M. 2022. Combining predicted seabird movements and oil drift using lagrangian agent-based model solutions. M. Mancuso et al. (EDS.). Marine Pollution - Recent Developments. Environmental Sciences. IntechOpen 2023, 106956.
  • Maharana, K., Mondal, S. & Nemade, B. 2022. A review: Data pre-processing and data augmentation techniques, Global Transitions Proceedings 3(1), 91-99.
  • Marseguerra, M. & Zio, E. 2002. Basics of the Monte Carlo Method with Application to System Reliability. LiLoLe - Verlag, Hagen.
  • McCreight, R. 2023. Gauging the impact of satellite & space systems on critical infrastructure [CI]: risk management is neither an enigma nor a mystery for CI systems security. Journal of Homeland Security and Emergency Management 20(2), 183-208.
  • Mitchell, P.L., Sheehy, J.E. 1997. Comparison of predictions and observations to assess model performance: a method of empirical validation, F.W. Penning de Vries (Eds.). Applications of Systems Approaches at the Field Level. Systems Approaches for Sustainable Agricultural Development 6. Springer, Dordrecht.
  • Neutatz, F., Chen, B., Alkhatib, Y., Ye, J. & Abedjan, Z. 2022. Data cleaning and AutoML: would an optimizer choose to clean? Datenbank Spektrum 22, 121-130.
  • NOAA. 2023. GNOME Suite for Oil Spill Modeling, https://response.restoration.noaa.gov/oil-and-chemical-spills/oil-spills/response-tools/gnome-suite-oil-spill-modeling.html (accessed 29 May 2023).
  • NOAA. 2023. Oil Spills. Oil Types, https://response.restoration.noaa.gov/oil-and-chemical-spills/oil-spills/oil-types.html (accessed 29 May 2023).
  • Pasquill, F. & Smith, F.B. 1983. Atmospheric Diffusion, 3rd ed. Ellis Horwood Limited, Chichester.
  • Pethybridge, H.R., Weijerman, M., Perrymann, H., Audzijonyte, A., Porobic, J., McGregor, V., Girardin, R., Bulman, C., Ortega-Cisneros, K., Sinerchia, M., Hutton, T., Lozano-Montes, H., Mori, M., Novaglio, C., Fay, G., Gorton, R. & Fulton, E. 2019. Calibrating process-based marine ecosystem models: an example case using Atlantis, Ecological Modelling 412, 108822.
  • Pocora, A., Purcarea, A.A., Nicolae, F. & Cotorcea, A. 2018. Modelling and simulation of oil spills in coastal waters. Proceeding of the 2018 IOP Conference Series: Earth Environmental Science 172, 012012.
  • Rao, M.S. & Naikan, V.N.A. 2016. Review of simulation approaches in reliability and availability modeling. International Journal of Performability Engineering 12(4), 369-388.
  • Reed, M., Johansen, O., Brandvik, P.J., Daling, P., Lewis, A., Fiocco, R., Mackay, D. & Prentki, R. 1999. Oil spill modeling towards the close of the 20th century: overview of the state of the art. Spill Science & Technology Bulletin 5(1), 3-16.
  • Spaulding, M.L. 2017. State of the art review and future directions in oil spill modeling. Marine Pollution Bulletin 115(1-2), 7-19.
  • Van den Broeck, J., Cunningham, S. A., Eeckels, R., & Herbst, K. 2005. Data cleaning: detecting, diagnosing, and editing data abnormalities. PLoS Medicine 2(10), e267.
  • Xiong, Z., Sang, J., Sun, X., Zhang, B. & Li, J. 2020. Comparisons of performance using data assimilation and data fusion approaches in acquiring precipitable water vapor: A case study of a western United States of America area. Water 12, 2943.
  • Zhang, Y. 2020. Sensitivity analysis in simulating oil slick using CA model, Ocean Engineering 218, 108216.
  • Zio, E. & Aven, T. 2013. Model output uncertainty in risk assessment. International Journal of Performability Engineering 29(5), 475-486.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-272ceb6b-83f8-4458-8cb5-250fd1a49e1c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.