Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2019 | Vol. 67, no. 6 | 1945--1953
Tytuł artykułu

Finite-difference time domain (FDTD) modeling of ground penetrating radar pulse energy for locating burial sites

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Analysis of the finite-difference time domain (FDTD) numerical simulation of ground penetrating radar (GPR) measurement for locating burial sites is described in this paper. Effective, efficient, and reliability interpretation of GPR field data obtained from clandestine sites is very crucial in forensic investigations. The main goal of the study is the prediction of the change in the interaction of the electromagnetic incident on changes in buried bodies with time. In order to achieve this, the research involves the modeling of the GPR electromagnetic pulse energy responses to simulated changes in buried body with time with a view to understand what the results of real field measurement will give. The field measurements were conducted with GPR system manufactured by Mala Geoscience with antennae frequency of 500 MHz, 250 MHz, and 100 MHz. Responses from both synthetic and field radargrams depict the target was intercepted at same time (approximately 25 ns). The results have demonstrated that FDTD modeling is an important tool for enhancing the reliability of GPR data interpretation particularly for forensic study.
Wydawca

Czasopismo
Rocznik
Strony
1945--1953
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
  • AGH University of Science and Technology, 30‑059 Kraków, Poland, karcz@agh.edu.pl
  • Wydział Technologii i Jakości Budowy Dróg, Generalna Dyrekcja Dróg Krajowych I Autostrad, Warsaw, Poland, ewemazurkiewicz@gmail.com
Bibliografia
  • 1. Brilis GM, Gerlach CL, van Waasbergen RJ (2000) Remote sensing tools assist in environmental forensics: part I digital tools—traditional methods. Environ Forensics 1:63–67
  • 2. Carcione JM, Karczewski J, Mazurkiewicz E, Tadeusiewicz R, Tomecka-Suchoń S (2017) Numerical modelling of GPR electromagnetic fields for locating burial sites. In: E3S web of conferences, vol 24. EDP sciences, p 01002
  • 3. Daniels DJ (2004) Ground penetrating radar, 2nd edn. The Institution of Electrical Engineers, London
  • 4. Davenport GC (2001) Remote sensing applications in forensic investigations. Hist Archaeol 35:87–100
  • 5. David OC, Yellowlees D, Tibbett M (2008) Using ninhydrin to detect gravesoil. J Forensic Sci 53(2):397–400
  • 6. Deans J, Gerhard J, Carter LJ (2006) Analysis of a thermal imaging method for landmine detection, using infrared heating of the sand surface. Infrared Phys Technol 48:202–216
  • 7. Dickinson D (1976) Aerial use of infrared camera in police search for the body of a missing person in New Zealand. J Forensic Sci Soc 16(3):205–211
  • 8. Equitas (2010) Methodological proposals for documenting and searching for missing persons in Columbia. Equitas. http://www.equitas.org.co/docs/45.pdf Accessed 25 Jan 2012.
  • 9. Fernández-Álvarez JP, Rubio-Melendi D, Martínez-Velasco A, Pringle JK, Aguilera HD (2016) Discovery of a mass grave from the Spanish Civil War using Ground Penetrating Radar and forensic archaeology. Forensic Sci Int 267:e10–e17
  • 10. Giang NV, Duan NB, Thanh LN, Hida N (2013) Geophysical techniques to aquifer locating and monitoring for industrial zones in North Hanoi, Vietnam. Acta Geophys 61(6):1573–1597
  • 11. Giannopoulos A (2005) Modelling ground penetrating radar by GprMax. Constr Build Mater 19(10):755–762
  • 12. Grip WM, Grip RW, Morrison R (2000) Application of aerial photography in environmental forensic investigations. Environ Forensics 1:121–129
  • 13. Jol HM (ed) (2008) Ground penetrating radar theory and applications. Elsevier, Amsterdam
  • 14. Karczewski J, Ortyl Ł, Pasternak M (2011) The outline of GPR method (in Polish: Zarys metody georadarowej), ed. Wydawnictwa AGH
  • 15. Larson DO, Vass AA, Wise M (2011) Advanced scientific methods and procedures in the forensic investigation of clandestine graves. J Contemp Crim Justice 27(2):149–182
  • 16. Lee CW (2004) The nature of, and approaches to, teaching forensic geoscience on forensic and earth science courses. In: Pye K, Croft DJ (eds) Forensic geoscience: principles, techniques and applications, vol 232. Special Publication of the Geological Society of London, 301–333
  • 17. Luebbers R, Steich D, Kunz K (1993) FDTD calculation of scattering from frequency-dependent materials. IEEE Trans Antennas Propag 41(9):1249–1257
  • 18. Mallet C, Bretar F (2009) Full-waveform topographic lidar: state-of-the-art. J Photogramm Remote Sens 64(1):1–16
  • 19. Modroo JJ, Olhoeft GR (2004) Avalanche rescue using Ground penetrating radar. In: Proceedings of the tenth international conference on GPR, Delft
  • 20. Pilecki Z, Zietek J, Karczewski J, Pilecka E, Klosinski J (2007) The effectiveness of recognizing of failure surface of the Carpathian flysch landslide using wave methods. In: Near surface 2007–13th EAGE European meeting of environmental and engineering geophysics
  • 21. Powell K (2004) Detecting buried human remains using near-surface geophysical instruments. Explor Geophys 35(1):88–92
  • 22. Reynolds JM (2011) An introduction to applied and environmental geophysics. Wiley, New York
  • 23. Ruffell A, McKinley J (2008) Geoforensics. Wiley, New York, p 332
  • 24. Sandmeier KJ (2012) ReflexW version 7.0 program for the processing of seismic, acoustic and electromagnetic reflection and transmission data
  • 25. Solla M, Riveiro B, Álvarez MX, Arias P (2012) Experimental forensic scenes for the characterization of ground-penetrating radar wave response. Forensic Sci Int 220(1–3):50–58
  • 26. Statheropoulos M, Agapiou A, Zorba E, Mikedi K, Karma S, Pallis GC, Eliopoulos C, Spiliopoulou C (2011) Combined chemical and optical methods for monitoring the early decay stages of surrogate human models. Forensic Sci Int 210:154–163
  • 27. Taflove A, Hagness SC (2000) Computational electrodynamics: the finite-difference time-domain method. Artech House, Norwood
  • 28. Taflove A, Umashankar K (1989) Review of FD-TD numerical modeling of electromagnetic wave scattering and radar cross-section. Proc IEEE 77:682–699
  • 29. Turvey EB, Crowther S (2017) Forensic investigation: an introduction. Elsevier, Amsterdam
  • 30. Vass A, Smith R, Thompson C, Burnett M, Wolf D, Synstelien J, Dulgerian N, Eckenrode B (2004) Decompositional odor analysis database. J Forensic Sci 49(4):1–10
  • 31. Warren C (2015) What the dog knows: scent, science, and the amazing ways dogs perceive the world. Simon and Schuster, New York
  • 32. Warren C, Giannopoulos A, Giannakis I (2016) gprMax: open source software to simulate electromagnetic wave propagation for ground penetrating radar. Comput Phys Commun 209:163–170
  • 33. Widodo AI, Syaifullah K, Mahya MJ, Hidayat M (2016) Detecting buried human bodies using ground-penetrating radar. Earth Sci Res 5(2):1927-0542
  • 34. Williams GM, Aitkenhead N (1991) Lessons from Loscoe: the uncontrolled migration of landfill gas. Q J Eng GeolHydrogeol 24(2):191–207
  • 35. Yee KS (1966) Numerical solution of initial boundary value problems involving Maxwells equations in isotropic media. IEEE Trans Antennas Propag 14(3):302–307
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-26ffc93d-9289-43e6-83bc-d5d7029b2579
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.