Czasopismo
2023
|
Vol. 23, no. 2
|
art. no. e90, 2023
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
In various microelectromechanical systems, arch-type micro- or nanostructures are extensively used because of their specific geometry. In this regard, the present research exploration deals with the size-dependent nonlinear in-plane stability characteristics of functionally graded (FG) multilayer composite micro/nano-arches subjected to uniform radial pressure together with temperature changes. To this intension, the nonlocal strain gradient (NSG) continuum elasticity is implemented in a higher-order shear flexible arch model to capture nonlocal stress tensor as well as strain gradient size dependencies. With the aid of the Halpin-Tsai homogenization scheme, the material the effective Young’s modulus is extracted layer to layer corresponding to different FG multilayer pattern of composite micro/nano-arches. The NSG-based radial load-defection and radial load-axial load nonlinear equilibrium paths are traced corresponding to several parametrical case studies. It is revealed that the both effects of the nonlocal stress tensor and strain gradient size dependency on the value of lower and upper limit radial pressures are more signifcant than those on the lower and upper limit resultant axial forces. Furthermore, it is observed that by increasing the value of temperature change, the effects of nonlocality and strain gradient size dependency on the NSG-based lower limit radial pressure enhance, while these efects on the NSG-based lower limit resultant axial force decrease.
Czasopismo
Rocznik
Tom
Strony
art. no. e90, 2023
Opis fizyczny
Bibliogr. 64 poz., rys., tab., wykr.
Twórcy
autor
- College of Urban and Rural Construction, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
autor
- Nanotechnology and Multifunctional Structures Research Center (NMSRC), Eastern Mediterranean University, Famagusta, North Cyprus via Mersin 10, Turkey
- Department of Mechanical Engineering, Eastern Mediterranean University, Famagusta, North Cyprus via Mersin 10, Turkey
autor
- School of Science and Technology, The University of Georgia, 0171 Tbilisi, Georgia
- Nanotechnology and Multifunctional Structures Research Center (NMSRC), Eastern Mediterranean University, Famagusta, North Cyprus via Mersin 10, Turkey
- Department of Mechanical Engineering, Eastern Mediterranean University, Famagusta, North Cyprus via Mersin 10, Turkey
autor
- Nanotechnology and Multifunctional Structures Research Center (NMSRC), Eastern Mediterranean University, Famagusta, North Cyprus via Mersin 10, Turkey, babak.safaei@emu.edu.tr
- Department of Mechanical Engineering, Eastern Mediterranean University, Famagusta, North Cyprus via Mersin 10, Turkey
Bibliografia
- 1. Zhao S, Yang Z, Kitipornchai S, Yang J. Dynamic instability of functionally graded porous arches reinforced by graphene platelets. Thin Walled Struct. 2020;147:106491. https://doi.org/ 10.1016/J.TWS.2019.106491.
- 2. Liu AR, Huang YH, Fu JY, Yu QC, Rao R. Experimental research on stable ultimate bearing capacity of leaning-type arch rib systems. J Constr Steel Res. 2015;114:281-92. https:// doi.org/10.1016/J.JCSR.2015.08.011.
- 3. Huang Y, Yang Z, Fu J, Liu A. Long-term lateral-torsional buckling behavior of pin-ended CFST arches under uniform radial loads and temperature field. Mech Adv Mater Struct. 2021;28:2472-86. https://doi.org/10.1080/15376494.2020. 1743397.
- 4. Sahmani S, Khandan A, Saber-Samandari S, Aghdam MM. Vibrations of beam-type implants made of 3D printed bredigite-magnetite bio-nanocomposite scafolds under axial compression: Application, communication and simulation. Ceram Int. 2018;44:11282-91. https://doi.org/10.1016/J.CERAMINT. 2018.03.173.
- 5. Sahmani S, Shahali M, Khandan A, Saber-Samandari S, Aghdam MM. Analytical and experimental analyses for mechanical and biological characteristics of novel nanoclay bio-nanocomposite scafolds fabricated via space holder technique. Appl Clay Sci. 2018;165:112-23. https://doi.org/10.1016/J.CLAY. 2018.08.013.
- 6. Babaei H, Kiani Y, Eslami MR. Thermally induced large defection analysis of shear deformable FGM shallow curved tubes using perturbation method. ZAMM Zeitschrift Fur Angew Math Und Mech. 2019;99:e201800148. https://doi.org/10.1002/ ZAMM.201800148.
- 7. Trinh MC, Kim SE. A three variable refined shear deformation theory for porous functionally graded doubly curved shell analysis. Aerosp Sci Technol. 2019;94:105356. https://doi.org/ 10.1016/j.ast.2019.105356.
- 8. Sahmani S, Saber-Samandari S, Khandan A, Aghdam MM. Influence of MgO nanoparticles on the mechanical properties of coated hydroxyapatite nanocomposite scafolds produced via space holder technique: Fabrication, characterization and simulation. J Mech Behav Biomed Mater. 2019;95:76-88. https://doi. org/10.1016/j.jmbbm.2019.03.014.
- 9. Lu H, Liu L, Liu A, Pi YL, Bradford MA, Huang Y. Effects of movement and rotation of supports on nonlinear instability of fixed shallow arches. Thin-Walled Struct. 2020;155:106909. https://doi.org/10.1016/J.TWS.2020.106909.
- 10. Sahmani S, Khandan A, Saber-Samandari S, Mohammadi AM. Effect of magnetite nanoparticles on the biological and mechanical properties of hydroxyapatite porous scafolds coated with ibuprofen drug. Mater Sci Eng C. 2020;111:110835. https://doi. org/10.1016/j.msec.2020.110835.
- 11. Zhang Z, Liu A, Yang J, PY Lin, Huang Y, Fu J. Nonlinear inplane buckling of shallow laminated arches incorporating shear deformation under a uniform radial loading. Compos Struct 2020;252:112732. https://doi.org/10.1016/J.COMPSTRUCT. 2020.112732.
- 12. Brischetto S, Tornabene F, Fantuzzi N, Viola E. 3D exact and 2D generalized differential quadrature models for free vibration analysis of functionally graded plates and cylinders. Meccanica. 2016;51:2059-98. https://doi.org/10.1007/S11012-016-0361-Y/ FIGURES/13.
- 13. Barbaros I, Yang Y, Safaei B, Yang Z, Qin Z, Asmael M. State-of-the-art review of fabrication, application, and mechanical properties of functionally graded porous nanocomposite materials. Nanotechnol Rev. 2022;11:321-71. https://doi.org/10.1515/ NTREV-2022-0017/ASSET/GRAPHIC/J_NTREV-2022-0017_ FIG_010.JPG.
- 14. Nuhu AA, Safaei B. State-of-the-Art of Vibration Analysis of Small-Sized Structures by using Nonclassical Continuum Theories of Elasticity. Arch Comput Methods Eng. 2022;2022(29):4959- 5147. https://doi.org/10.1007/S11831-022-09754-3.
- 15. Tornabene F, Dimitri R, Viola E. Transient dynamic response of generally-shaped arches based on a GDQ-time-stepping method. Int J Mech Sci. 2016;114:277-314. https://doi.org/10.1016/J.IJMECSCI.2016.05.005.
- 16. Yi H, Sahmani S, Safaei B. On size-dependent large-amplitude free oscillations of FGPM nanoshells incorporating vibrational mode interactions. Arch Civ Mech Eng. 2020;20:48. https://doi. org/10.1007/s43452-020-00047-9.
- 17. Allahkarami F, Tohidi H, Dimitri R, Tornabene F. Dynamic stability of bi-directional functionally graded porous cylindrical shells embedded in an elastic foundation. Appl Sci. 2020;10:1345. https://doi.org/10.3390/APP10041345.
- 18. Li Z, Zheng J, Zhang Z. Thermal nonlinear performance of the porous metal cylinders with composite graphene nanofiller reinforcement encased in elastic mediums. Int J Mech Sci 2020;181:105698. https://doi.org/10.1016/J.IJMECSCI.2020. 105698.
- 19. Fan F, Lei B, Sahmani S, Safaei B. On the surface elastic-based shear buckling characteristics of functionally graded composite skew nanoplates. Thin-Walled Struct 2020;154:106841. https://doi.org/10.1016/j.tws.2020.106841.
- 20. Shahmohammadi MA, Abdollahi P, Salehipour H. Geometrically nonlinear analysis of doubly curved imperfect shallow shells made of functionally graded carbon nanotube reinforced composite (FG_CNTRC). Mech Based Des Struct Mach. 2020. https://doi. Org/10.1080/15397734.2020.1822182.
- 21. Yuan Y, Zhao X, Zhao Y, Sahmani S, Safaei B. Dynamic stability of nonlocal strain gradient FGM truncated conical microshells integrated with magnetostrictive facesheets resting on a nonlinear viscoelastic foundation. Thin-Walled Struct 2021;159:107249. https://doi.org/10.1016/j.tws.2020.107249.
- 22. Xie K, Wang Y, Fan X, Chen H. Free vibration and dynamic response of micro-scale functionally graded circular arches by using a quasi-3D theory. J Brazilian Soc Mech Sci Eng. 2022;44:130. https://doi.org/10.1007/S40430-022-03423-Z.
- 23. Moghaddasi M, Kiani Y. Free and forced vibrations of graphene platelets reinforced composite laminated arches subjected to moving load. Meccanica. 2022;57:1105-24. https://doi.org/10.1007/S11012-022-01476-X.
- 24. Xie B, Sahmani S, Safaei B, Xu B. Nonlinear secondary resonance of FG porous silicon nanobeams under periodic hard excitations based on surface elasticity theory. Eng Comput. 2021;37:1611-34. https://doi.org/10.1007/s00366-019-00931-w.
- 25. Li W, Geng R, Chen S, Huang H. Geometrically exact beam element with predefined stress resultant fields for nonlinear analysis of FG curved beams with discontinuous stifness. Compos Struct 2021;276:114437. https://doi.org/10.1016/J.COMPSTRUCT.2021.114437.
- 26. Rajasekaran S, Khaniki HB, Ghayesh MH. Static, stability and dynamic characteristics of asymmetric bi-directional functionally graded sandwich tapered elastic arches in thermo-mechanical environments. Eur J Mech A/Solids 2022;92:104447. https://doi. org/10.1016/J.EUROMECHSOL.2021.104447.
- 27. Li Q, Xie B, Sahmani S, Safaei B. Surface stress effect on the nonlinear free vibrations of functionally graded composite nanoshells in the presence of modal interaction. J Brazilian Soc Mech Sci Eng. 2020;42:237. https://doi.org/10.1007/s40430-020-02317-2.
- 28. Fan F, Cai X, Sahmani S, Safaei B. Isogeometric thermal post-buckling analysis of porous FGM quasi-3D nanoplates having cutouts with different shapes based upon surface stress elasticity. Compos Struct 2021;262:113604. https://doi.org/10.1016/j.comps truct.2021.113604.
- 29. Yang X, Sahmani S, Safaei B. Postbuckling analysis of hydrostatic pressurized FGM microsized shells including strain gradient and stress-driven nonlocal efects. Eng Comput. 2021;37:1549-64. https://doi.org/10.1007/s00366-019-00901-2.
- 30. Kiss LP. Sensitivity of FGM shallow arches to loading imperfection when loaded by a concentrated radial force around the crown. Int J Non Linear Mech. 2019;116:62-72. https://doi.org/10.1016/J.IJNONLINMEC.2019.05.009.
- 31. Fazzolari FA, Viscoti M, Dimitri R, Tornabene F. 1D-Hierarchical Ritz and 2D-GDQ Formulations for the free vibration analysis of circular/elliptical cylindrical shells and beam structures. Compos Struct 2021;258:113338. https://doi.org/10.1016/J.COMPS TRUCT.2020.113338.
- 32. Ali V, Alklaibi AM, Talha M. On natural frequency of finite element modeled geometrically imperfect shear deformable functionally gradient sandwich arches in thermal environment. Int J Appl Mech. 2019;11:1950001. https://doi.org/10.1142/S1758825119500017.
- 33. Fattahi AM, Sahmani S, Ahmed NA. Nonlocal strain gradient beam model for nonlinear secondary resonance analysis of functionally graded porous micro/nano-beams under periodic hard excitations. Mech Based Des Struct Mach. 2020;48:403-32. https://doi.org/10.1080/15397734.2019.1624176.
- 34. Li Z, Zheng J, Zhang Z, He H. Nonlinear stability and buckling analysis of composite functionally graded arches subjected to external pressure and temperature loading. Eng Struct 2019;199:109606. https://doi.org/10.1016/J.ENGSTRUCT.2019. 109606.
- 35. Sahmani S, Fattahi AM, Ahmed NA. Surface elastic shell model for nonlinear primary resonant dynamics of FG porous nanoshells incorporating modal interactions. Int J Mech Sci 2020;165:105203. https://doi.org/10.1016/j.ijmecsci.2019. 105203.
- 36. Huang Y, Yang Z, Liu A, Fu J. Nonlinear buckling analysis of functionally graded graphene reinforced composite shallow arches with elastic rotational constraints under uniform radial load. Materials (Basel). 2018;11:910. https://doi.org/10.3390/MA11060910.
- 37. Song X, Li S. Nonlinear stability of fixed-fixed FGM arches subjected to mechanical and thermal loads. Adv Mater Res 2008;33-37 PART:699-706. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMR.33-37.699.
- 38. Babaei H, Kiani Y, Eslami MR. Geometrically nonlinear analysis of shear deformable FGM shallow pinned arches on nonlinear elastic foundation under mechanical and thermal loads. Acta Mech. 2018;229:3123-41. https://doi.org/10.1007/ S00707-018-2134-2.
- 39. Yuan Y, Zhao K, Sahmani S, Safaei B. Size-dependent shear buckling response of FGM skew nanoplates modeled via different homogenization schemes. Appl Math Mech. 2020;41:587-604. https://doi.org/10.1007/s10483-020-2600-6.
- 40. Babaei H, Kiani Y, Eslami MR. Geometrically nonlinear analysis of functionally graded shallow curved tubes in thermal environment. Thin-Walled Struct. 2018;132:48-57. https://doi.org/10.1016/J.TWS.2018.08.008.
- 41. Rao R, Ye Z, Yang Z, Sahmani S, Safaei B. Nonlinear buckling mode transition analysis of axial-thermal-electrical-loaded FG piezoelectric nanopanels incorporating nonlocal and couple stress tensors. Arch Civ Mech Eng. 2022;22:1-21. https://doi.org/10. 1007/S43452-022-00437-1/TABLES/7.
- 42. Zhao J, Wang J, Sahmani S, Safaei B. Probabilistic-based nonlinear stability analysis of randomly reinforced microshells under combined axial-lateral load using meshfree strain gradient formulations. Eng Struct 2022;262:114344. https://doi.org/10.1016/J.ENGSTRUCT.2022.114344.
- 43. Wan ZQ, Li SR, Ma HW. Geometrically nonlinear analysis of functionally graded timoshenko curved beams with variable curvatures. Adv Mater Sci Eng. 2019;2019:6204145. https://doi.org/ 10.1155/2019/6204145.
- 44. Liu Z, Yang C, Gao W, Wu D, Li G. Nonlinear behaviour and stability of functionally graded porous arches with graphene platelets reinforcements. Int J Eng Sci. 2019;137:37-56. https://doi.org/10.1016/J.IJENGSCI.2018.12.003.
- 45. Sahmani S, Safaei B. Large-amplitude oscillations of composite conical nanoshells with in-plane heterogeneity including surface stress effect. Appl Math Model. 2021;89:1792-813. https://doi.org/10.1016/j.apm.2020.08.039.
- 46. Babaei H, Kiani Y, Eslami MR. Thermomechanical nonlinear in-plane analysis of fix-ended FGM shallow arches on nonlinear elastic foundation using two-step perturbation technique. Int J Mech Mater Des. 2019;15:225-44. https://doi.org/10.1007/ S10999-018-9420-Y.
- 47. Yang Z, Liu A, Lai SK, Safaei B, Lv J, Huang Y, et al. Thermally induced instability on asymmetric buckling analysis of pinned-fixed FG-GPLRC arches. Eng Struct 2022;250:113243. https://doi.org/10.1016/J.ENGSTRUCT.2021.113243.
- 48. Sun J-H, Zhou Z-D, Sahmani S, Safaei B. Microstructural size dependency in nonlinear lateral stability of random reinforced microshells via meshfree-based applied mathematical modeling. Int J Struct Stab Dyn. 2021;21:2150164.
- 49. Yang Z, Yang J, Liu A, Fu J. Nonlinear in-plane instability of functionally graded multilayer graphene reinforced composite shallow arches. Compos Struct. 2018;204:301-12. https://doi. org/10.1016/J.COMPSTRUCT.2018.07.072.
- 50. Yang Z, Huang Y, Liu A, Fu J, Wu D. Nonlinear in-plane buckling of fixed shallow functionally graded graphene reinforced composite arches subjected to mechanical and thermal loading. Appl Math Model. 2019;70:315-27. https://doi.org/10.1016/J.APM.2019.01.024.
- 51. Yue X-G, Sahmani S, Luo H, Safaei B. Nonlocal strain gradient-based quasi-3D nonlinear dynamical stability behavior of agglomerated nanocomposite microbeams. Arch Civ Mech Eng. 2023;23:21. https://doi.org/10.1007/s43452-022-00548-9.
- 52. Nikrad SF, Kanellopoulos A, Bodaghi M, Chen ZT, Pourasghar A. Large deformation behavior of functionally graded porous curved beams in thermal environment. Arch Appl Mech. 2021;91:2255-78. https://doi.org/10.1007/S00419-021-01882-9.
- 53. Zuo D, Safaei B, Sahmani S, Ma G. Nonlinear free vibrations of porous composite microplates incorporating various microstructural-dependent strain gradient tensors. Appl Math Mech 2022 436 2022;43:825-44. https://doi.org/10.1007/S10483-022-2851-7.
- 54. Alshenawy R, Sahmani S, Safaei B, Elmoghazy Y, Al-Alwan A, Nuwairan M Al. Three-dimensional nonlinear stability analysis of axial-thermal-electrical loaded FG piezoelectric microshells via MKM strain gradient formulations. Appl Math Comput 2023;439:127623. https://doi.org/10.1016/J.AMC.2022.127623.
- 55. Van TH, Duc ND. Nonlinear response of shear deformable FGM curved panels resting on elastic foundations and subjected to mechanical and thermal loading conditions. Appl Math Model. 2014;38:2848-66. https://doi.org/10.1016/J.APM.2013.11.015.
- 56. Afdl JCH, Kardos JL. The Halpin-Tsai equations: A review. Polym Eng Sci. 1976;16:344-52. https://doi.org/10.1002/PEN. 760160512.
- 57. Lim CW, Zhang G, Reddy JN. A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J Mech Phys Solids. 2015;78:298-313. https://doi.org/10.1016/j.jmps.2015.02.001.
- 58. Eringen AC. Linear theory of nonlocal elasticity and dispersion of plane waves. Int J Eng Sci. 1972;10:425-35. https://doi.org/10.1016/0020-7225(72)90050-X.
- 59. Apuzzo A, Barretta R, Faghidian SA, Luciano R, Marotti de Sciarra F. Free vibrations of elastic beams by modified nonlocal strain gradient theory. Int J Eng Sci 2018;133:99-108. https://doi. org/10.1016/j.ijengsci.2018.09.002.
- 60. Tjong SC. Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets. Mater Sci Eng R Reports. 2013;74:281-350. https://doi.org/10.1016/J.MSER.2013.08.001.
- 61. Wu H, Yang J, Kitipornchai S. Dynamic instability of functionally graded multilayer graphene nanocomposite beams in thermal environment. Compos Struct. 2017;162:244-54. https://doi.org/10.1016/J.COMPSTRUCT.2016.12.001.
- 62. Luu AT, Kim N Il, Lee J. Bending and buckling of general laminated curved beams using NURBS-based isogeometric analysis. Eur J Mech-A/Solids 2015;54:218-31. https://doi.org/10.1016/J.EUROMECHSOL.2015.07.006.
- 63. Öztürk H, Yeşilyurt I, Sabuncu M. In-plane stability analysis of non-uniform cross-sectioned curved beams. J Sound Vib. 2006;296:277-91. https://doi.org/10.1016/J.JSV.2006.03.002.
- 64. Ganapathi M, Polit O. A nonlocal higher-order model including thickness stretching effect for bending and buckling of curved nanobeams. Appl Math Model. 2018;57:121-41. https://doi.org/10.1016/J.APM.2017.12.025.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-26e98b7f-f174-4e16-8883-5169fb8601ae