Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2022 | Vol. 70, no 6 | 2805--2812
Tytuł artykułu

A study of grain size effect on radon exhalation rate and uranium content of a phosphate rock

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Assessment of the exhalation rate allows a classification of materials according to their potential risk of exposure to radon. The present study investigates the granulation effect on the radon exhalation rates from a phosphate sample. The phosphate sample was sieved into different grain size dimensions ranging from2 mm. The exhalation rate of each fraction was measured using the accumulation method. The radon exhalation rate was found to decrease with an increase in grain size above 0.125 mm. The influence of grain size on uranium content was also studied using the autoradiography method. The uranium concentration increased for the smallest grains (0.5 mm). The measured values of radon exhalation rates are under the limits reported worldwide.
Wydawca

Czasopismo
Rocznik
Strony
2805--2812
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
  • Laboratory of Nuclear, Atomic, Molecular, Mechanical and Energetic Physics, Faculty of Sciences, Chouaib Doukkali University, El Jadida, Morocco, meryamejabbade@gmail.com
  • Department of Physics, Polydisciplinary Faculty of Saf, Cadi Ayyad University, Saf, Morocco
  • The Hubert Curien Pluridisciplinary Institute, University of Strasbourg, Strasbourg, France
  • Polydisciplinary Faculty of Saf, Cadi Ayyad University, Saf, Morocco
  • Laboratory of Nuclear, Atomic, Molecular, Mechanical and Energetic Physics, Faculty of Sciences, Chouaib Doukkali University, El Jadida, Morocco
Bibliografia
  • 1. Alshahri F (2014) Measurement of 222Rn concentration and exhalation rate from phosphate rocks using SSBD detector in Saudi Arabia. Arab J Sci Eng 39:5765–5770. https://doi.org/10.1007/s13369-014-1108-5
  • 2. Azkour K, Nourreddine A, Adloff JC, Pape A (1999) α-Particle radioactivity from LR 115 by two methods of analysis. Radiat Meas 31:223–226. https://doi.org/10.1016/S1350-4487(99)00099-2
  • 3. Bilali L, Aouad A, Benchanâa M, Mokhlisse A (2002) Pyrolysis of the Moroccan (Youssoufia) rock phosphate. J Anal Appl Pyrolysis 65:221–237. https://doi.org/10.1016/S0165-2370(02)00002-5
  • 4. Bossus DAW (1984) Emanating power and specific surface area. Radiat Prot Dosim 7:73–76. https://doi.org/10.1093/oxfordjournals.rpd.a082966
  • 5. Breitner D, Turtiainen T, Arvela H et al (2008) Multidisciplinary analysis OF Finnish esker sediment in radon source identification. Sci Total Environ 405:129–139. https://doi.org/10.1016/j.scitotenv.2008.06.015
  • 6. Breitner D, Arvela H, Hellmuth K-H, Renvall T (2010) Effect of moisture content on emanation at different grain size fractions–a pilot study on granitic esker sand sample. J Environ Radioact 101:1002–1006. https://doi.org/10.1016/j.jenvrad.2010.07.008
  • 7. Chitra N, Danalakshmi B, Supriya D et al (2018) Study of radon and thoron exhalation from soil samples of different grain sizes. Appl Radiat Isot 133:75–80. https://doi.org/10.1016/j.apradiso.2017.12.017
  • 8. Dinh Chau N, Chruściel E, Prokólski Ł (2005) Factors controlling measurements of radon mass exhalation rate. J Environ Radioact 82:363–369. https://doi.org/10.1016/j.jenvrad.2005.02.006
  • 9. Faheem M, Matiullah, (2008) Radon exhalation and its dependence on moisture content from samples of soil and building materials. Radiat Meas 43:1458–1462. https://doi.org/10.1016/j.radmeas.2008.02.023
  • 10. Gaafar I, Hanfi M, El-Ahll LS, Zeidan I (2021) Assessment of radiation hazards from phosphate rocks, Sibaiya area, central eastern desert. Egypt Appl Radiat Isot 173:109734. https://doi.org/10.1016/j.apradiso.2021.109734
  • 11. Gutiérrez-Álvarez I, Martín JE, Adame JA et al (2020) Applicability of the closed-circuit accumulation chamber technique to measure radon surface exhalation rate under laboratory conditions. Radiat Meas 133:106284. https://doi.org/10.1016/j.radmeas.2020.106284
  • 12. Harb S, Ahmed NK, Elnobi S (2016) Effect of grain size on the radon exhalation rate and emanation coefficient of soil, phosphate and building material samples. J Nucl Part Phys 6:80–87. https://doi.org/10.5923/j.jnpp.20160604.02
  • 13. Hilal MA, El Afifi EM, Nayl AA (2015) Investigation of some factors affecting on release of radon-222 from phosphogypsum waste associated with phosphate ore processing. J Environ Radioact 145:40–47. https://doi.org/10.1016/j.jenvrad.2015.03.030
  • 14. Hosoda M, Shimo M, Sugino M et al (2007) Effect of soil moisture content on radon and thoron exhalation. J Nucl Sci Technol 44:664–672. https://doi.org/10.1080/18811248.2007.9711855
  • 15. Ibrahim EM, El Aassy IE, Abdel Ghany HA, Gamil SH (2018) Dependence of radon exhalation on grain size of sedimentary waste. Environ Earth Sci 77:534. https://doi.org/10.1007/s12665-018-7710-1
  • 16. Immé G, Catalano R, Mangano G, Morelli D (2014) Radon exhalation measurements for environmental and geophysics study. Radiat Phys Chem 95:349–351. https://doi.org/10.1016/j.radphyschem.2013.02.033
  • 17. Jang M, Kang C-S, Hyun Moon J (2005) Estimation of 222Rn release from the phosphogypsum board used in housing panels. J Environ Radioact 80:153–160. https://doi.org/10.1016/j.jenvrad.2004.08.010
  • 18. Kumari R, Kant K, Garg M (2015) The Effect of grain size on radon exhalation rate in natural-dust and stone-dust samples. Phys Procedia 80:128–130. https://doi.org/10.1016/j.phpro.2015.11.078
  • 19. López-Coto I, Mas JL, San Miguel EG et al (2009) A comparison between active and passive techniques for measurements of radon emanation factors. Appl Radiat Isot 67:849–853. https://doi.org/10.1016/j.apradiso.2009.01.045
  • 20. Markkanen M, Arvela H (1992) Radon emanation from soils. Radiat Prot Dosim 45:269–272. https://doi.org/10.1093/rpd/45.1-4.269
  • 21. Misdaq MA, Satif C, Charik R, Oufni L (1996) Study of the granulation influence on uranium content in sedimentary phosphate samples by using CR-39 and LR-115 solid state nuclear track detectors. Appl Radiat Isot 47:821–824. https://doi.org/10.1016/0969-8043(96)00017-6
  • 22. Nourreddine A, Azkour K, Benjelloun M et al (1999) Monte-Carlo detection probabilities for SSNTD application to uranium and thorium analysis in Moroccan phosphates. J Environ Radioact 42:101–107. https://doi.org/10.1016/S0265-931X(98)00028-9
  • 23. Pape A, Adloff JC, Barillon R et al (1998) Quantitative α-particle detection in a homogeneous medium with LR115. Nucl Instrum Method Phys Res b: Beam Interact Mater at 143:557–560. https://doi.org/10.1016/S0168-583X(98)00398-X
  • 24. Roessler CE (1990) Control of radium in phosphate mining, beneficiation and chemical processing. Environ Behav Radium 2:270–279
  • 25. Saad AF (2008) Radium activity and radon exhalation rates from phosphate ores using CR-39 on-line with an electronic radon gas analyzer “Alpha GUARD.” Radiat Meas 43:S463–S466
  • 26. Saad AF, Abdallah RM, Hussein NA (2018) Physical and geometrical parameters controlling measurements of radon emanation and exhalation from soil. Appl Radiat Isot 137:273–279. https://doi.org/10.1016/j.apradiso.2018.03.022
  • 27. Sakoda A, Hanamoto K, Ishimori Y et al (2010) First model of the effect of grain size on radon emanation. Appl Radiat Isot 68:1169–1172. https://doi.org/10.1016/j.apradiso.2009.11.070
  • 28. United Nations scientific committee on the effects of atomic radiation (UNSCEAR), (2000) Sources and effects of ionizing radiation. UNSCEAR 2000 report to the general assembly, with scientific annexes. United Nations
  • 29. WHO handbook on indoor radon: a public health perspective. Word Press, Geneva.
  • 30. Yang J, Busen H, Scherb H et al (2019) Modeling of radon exhalation from soil influenced by environmental parameters. Sci Total Environ 656:1304–1311. https://doi.org/10.1016/j.scitotenv.2018.11.464
  • 31. Zhuo W, Iida T, Furukawa M (2006) Modeling radon flux density from the earth’s surface. J Nucl Sci Technol 43:479–482. https://doi.org/10.1080/18811248.2006.9711127
  • 32. Ziegler JF, Biersack JP, Littmark U (1985) SRIM-the stopping and range of ions in solids pergamon press
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-26e0a738-aa4b-4a81-9b39-11345d19d76b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.