Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | Vol. 19, no. 4 | 958--966
Tytuł artykułu

Toward understanding the origins of poor ductility in a metal-matrix composite processed by accumulative roll bonding (ARB)

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The importance of second phase particles has received less attention for metal-matrix composites (MMCs) processed by one of the most common severe plastic deformation (SPD) techniques known as accumulative roll bonding (ARB). Accordingly, the present work has been dedicated to the processing and evaluating the effects of ARB on the tensile properties, work-hardening behavior, distribution of particles, and fracture surface appearance of a typical Al-B4C particulate composite. It was found that bonding between the reinforcement and the matrix is not good enough to grant the effective strengthening effect. As a result, both tensile strength and ductility of ARB processed aluminum were higher than those of ARB processed Al-B4C composite. Moreover, by increasing ARB pass number, the tensile strength and total elongation of composites increased, where the latter was related to the enhancement of particle distribution, improvement of the particle/matrix interface, and enhancement of the work-hardening behavior. It was revealed that particle distribution affects the ductility but its effect on the tensile strength is less pronounced.
Wydawca

Rocznik
Strony
958--966
Opis fizyczny
Bibliogr. 35 poz., rys., wykr.
Twórcy
  • School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran, Iran
autor
  • School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran, Iran, hmirzadeh@ut.ac.ir
Bibliografia
  • [1] R.Z. Valiev, T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Prog. Mater. Sci. 51 (2006) 881–981.
  • [2] Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, Novel ultra-high straining process for bulk materials—development of the accumulative roll-bonding (ARB) process, Acta Mater. 47 (1999) 579–583.
  • [3] A. Sabetghadam-Isfahani, H. Zalaghi, S. Hashempour, M. Fattahi, S. Amirkhanlou, Y. Fattahi, Fabrication and properties of ZrO2/AZ31 nanocomposite fillers of gas tungsten arc welding by accumulative roll bonding, Arch. Civil Mech. Eng. 16 (2016) 397–402.
  • [4] H.R. Akramifard, H. Mirzadeh, M.H. Parsa, Cladding of aluminum on AISI304L stainless steel by cold roll bonding: Mechanism, microstructure,and mechanical properties, Mater. Sci. Eng. A 613 (2014) 232–239.
  • [5] Z.J. Wang, M. Ma, Z.X. Qiu, J.X. Zhang, W.C. Liu, Microstructure, texture and mechanical properties of AA 1060 aluminum alloy processed by cryogenic accumulative roll bonding, Mater. Charact. 139 (2018) 269–278.
  • [6] M.R. Morovvati, B. Mollaei Dariani, The effect of annealing on the formability of aluminum 1200 after accumulative roll bonding, J. Manuf. Process. 30 (2017) 241–254.
  • [7] Z. Cyganek, K. Rodak, F. Grosman, Influence of rolling process with induced strain path on aluminum structure and mechanical properties, Arch. Civil Mech. Eng. 13 (2013) 7–13.
  • [8] H. Wang, L. Su, H. Yu, C. Lu, A.K. Tieu, Y. Liu, J. Zhang, A new finite element model for multi-cycle accumulative roll-bonding process and experiment verification, Mater. Sci. Eng. A 726 (2018) 93–101.
  • [9] R. Zamani, H. Mirzadeh, M. Emamy, Mechanical properties of a hot deformed Al-Mg2Si in-situ composite, Mater. Sci. Eng. A 726 (2018) 10–17.
  • [10] M. Rabiee, H. Mirzadeh, A. Ataie, Processing of Cu-Fe and Cu- Fe-SiC nanocomposites by mechanical alloying, Adv. Powder Technol. 28 (2017) 1882–1887.
  • [11] A.M. Faradonbeh, M. Shamanian, H. Edris, M. Paidar, Y. Bozkurt, Friction stir welding of Al-B4C composite fabricated by accumulative roll bonding: Evaluation of microstructure and mechanical behavior, J. Mater. Eng. Perform. 27 (2018) 835–846.
  • [12] M. Rezayat, A. Akbarzdeh, A. Owhadi, Fabrication of high-strength Al/SiCp nanocomposite sheets by accumulative roll bonding, Metall. Mater. Trans. A 43 (2012) 2085–2093.
  • [13] M. Alizadeh, M.H. Paydar, Fabrication of nanostructure Al/SiCp composite by accumulative roll-bonding (ARB) process, J. Alloys Compd. 492 (2010) 231–235.
  • [14] R. Jamaati, M.R. Toroghinejad, High-strength and highly-uniform composite produced by anodizing and accumulative roll bonding processes, Mater. Des. 31 (2010) 4816–4822.
  • [15] M. Alizadeh, M.H. Paydar, D. Terada, N. Tsuji, Effect of SiC particles on the microstructure evolution and mechanical properties of aluminum during ARB process, Mater. Sci. Eng. A 540 (2012) 13–23.
  • [16] R. Jamaati, M.R. Toroghinejad, J. Dutkiewicz, J.A. Szpunar, Investigation of nanostructured Al/Al2O3 composite produced by accumulative roll bonding process, Mater. Des. 35 (2012) 37–42.
  • [17] M. Rezayat, M. Gharechomaghlu, H. Mirzadeh, M.H. Parsa, A comprehensive approach for quantitative characterization and modeling of composite microstructures, Appl. Math. Modell. 40 (2016) 8826–8831.
  • [18] L. Li, K. Nagai, F. Yin, Progress in cold roll bonding of metals, Sci. Technol. Adv. Mater. 9 (2008) 1–11.
  • [19] M. Rezayat, M.R. Bahremand, M.H. Parsa, H. Mirzadeh, J.M. Cabrera, Modification of As-cast Al-Mg/B4C composite by addition of Zr, J. Alloys Compd. 685 (2016) 70–77.
  • [20] N. Mohammad Nejad Fard, H. Mirzadeh, M. Rezayat, J.M. Cabrera, Accumulative roll bonding of aluminum/stainless steel sheets, J. Ultrafine Grained Nanostruct. Mater. 50 (2017) 1–5.
  • [21] H. Mirzadeh, J.M. Cabrera, A. Najafizadeh, P.R. Calvillo, EBSD study of a hot deformed austenitic stainless steel, Mater. Sci. Eng. A 538 (2012) 236–245.
  • [22] M. Naghizadeh, H. Mirzadeh, Modeling the kinetics of deformation-induced martensitic transformation in AISI 316 metastable austenitic stainless steel, Vacuum 157 (2018) 243– 248.
  • [23] S. Saadatkia, H. Mirzadeh, J.M. Cabrera, Hot deformation behavior, dynamic recrystallization, and physically-based constitutive modeling of plain carbon steels, Mater. Sci. Eng. A 636 (2015) 196–202.
  • [24] F. Jamei, H. Mirzadeh, M. Zamani, Synergistic effects of holding time at intercritical annealing temperature and initial microstructure on the mechanical properties of dual phase steel, Mater. Sci. Eng. A 750 (2019) 125–131.
  • [25] H. Mirzadeh, J.M. Cabrera, J.M. Prado, A. Najafizadeh, Hot deformation behavior of a medium carbon microalloyed steel, Mater. Sci. Eng. A 528 (2011) 3876–3882.
  • [26] F. Najafkhani, H. Mirzadeh, M. Zamani, Effect of intercritical annealing conditions on grain growth kinetics of dual phase steel, Met. Mater. Int. (2019), http://dx.doi.org/10.1007/s12540- 019-00241-2 (in press).
  • [27] M. Nouroozi, H. Mirzadeh, M. Zamani, Effect of microstructural refinement and intercritical annealing time on mechanical properties of high-formability dual phase steel, Mater. Sci. Eng. A 736 (2018) 22–26.
  • [28] S. Nikkhah, H. Mirzadeh, M. Zamani, Fine tuning the mechanical properties of dual phase steel via thermomechanical processing of cold rolling and intercritical annealing, Mater. Chem. Phys. 203 (2019) 1–8.
  • [29] M. Abo-Elkhier, Modeling of high-temperature deformation of commercial pure aluminum (1050), J. Mater. Eng. Perform. 13 (2004) 241–247.
  • [30] F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, 2004.
  • [31] H.W. Hoppel, J. May, M. Goken, Enhanced strength and ductility in ultrafine-grained aluminium produced by accumulative roll bonding, Adv. Eng. Mater. 6 (2004) 781–784.
  • [32] M. Eizadjou, H. Danesh manesh, K. Janghorban, Microstructure and mechanical properties of ultra-fine grains (UFGs) aluminum strips produced by ARB process, J. Alloys Compd. 474 (2009) 406–415.
  • [33] H. Pirgazi, A. Akbarzadeh, R. Petrov, L. Kestens, Microstructure evolution and mechanical properties of AA1100 aluminum sheet processed by accumulative roll bonding, Mater. Sci. Eng. A 497 (2008) 132–138.
  • [34] G. Dieter, Mechanical Metallurgy, 3rd ed., McGraw-Hill, NewYork, 1986.
  • [35] B. Pourbahari, H. Mirzadeh, M. Emamy, Toward unraveling the effects of intermetallic compounds on the microstructure and mechanical properties of Mg–Gd–Al–Zn magnesium alloys in the as-cast, homogenized, and e extruded conditions, Mater. Sci. Eng. A 680 (2017) 39–46.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-26d167f7-89b5-4669-8cce-c73c0ac746aa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.