Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | Vol. 53, No. 1 | 1--27
Tytuł artykułu

Self-shadowing of a spacecraft in the computation of surface forces. An example in planetary geodesy

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We describe in details the algorithms used in modelling the self-shadowing between spacecraft components, which appears when computing the surface forces as precisely as possible and especially when moving parts are involved. This becomes necessary in planetary geodesy inverse problems using more and more precise orbital information to derive fundamental parameters of geophysical interest. Examples are given with two Mars orbiters, which show significant improvement on drag and solar radiation pressure model multiplying factors, a prerequisite for improving in turn the determination of other global models.
Wydawca

Rocznik
Strony
1--27
Opis fizyczny
Bibliogr. 211 poz., rys., tab.
Twórcy
autor
  • Centre National d’Etudes Spatiales Groupe de Recherches de Geodesie Spatiale 18, Avenue Edouard Belin, 31401 Toulouse Cedex 9, France, Tel.: +33 (0)5 61 33 2889, georges.balmino@get.omp.eu
autor
  • Centre National d’Etudes Spatiales Groupe de Recherches de Geodesie Spatiale 18, Avenue Edouard Belin, 31401 Toulouse Cedex 9, France, Tel.: +33 (0)5 61 33 2996, jean-charles.marty@cnes.fr
Bibliografia
  • Balmino, G. (2007), Auto-ombrage & occultation d’un satellite dans le calcul des forces de surface, Tutorial, C.N.E.S. (revised 2009), 1-44.
  • Bruinsma, S., and F. G. Lemoine (2002), A preliminary semi-empirical thermosphere model of Mars: DTM-Mars, J. Geophys. Res., 107(E10), doi:10.1029/2001JE001508.
  • Clavier, C. (1991), Modelisation des forces de surface sur un satellite artificiel, Technical report, C.N.E.S.
  • Folkner, W.M., R.D. Kahn, R.A. Preston, C.F. Yoder, E.M. Standish, J.G. Williams, C.D. Edwards, R.W. Hellings, T.M. Eubanks, and B.G. Bills (1997), Mars Dynamics from Earth-based trackingof the Mars Pathfinder lander, J. Geophys. Res. 102, 4057-4064.
  • Folkner W.M., Williams J.G., Boggs D.H., Park R.S., and Kuchynka P. (2014),The Planetary and Lunar Ephemerides DE430 and DE431, IPN Progress Report 42-196.
  • Gegout P. (1996), personal comm.
  • IERS Conventions (2010), Gérard Petit and Brian Luzum (eds.). IERS Technical Note 36, Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie. 179 pp., ISBN 3-89888-989-6.
  • Jordan, M.C. (1887), Cours d'analyse, Tome 3, Ecole Polytechnique, Gauthiers-Villars Ed., Paris.
  • Konopliv, A.S. C.F. Yoder, E.M. Standish, D-N. Yuan, and W.L. Sjogren (2006), A global solution for the Mars static and seasonal gravity, Mars orientation, Phobos and Deimos masses, and Mars ephemeris, Icarus 182, 23-50.
  • Konopliv, A.S., S.W. Asmar, W.M. Folkner, O. Karatekin, D.C. Nunes, S.E. Smrekar, C.F. Yoder, M. Zuber (2011), Mars high resolution gravity fields from MRO, Mars seasonal gravity, and other dynamical parameters, Icarus, Vol. 211, Issue 1, 401-428.
  • Lainey, V., V. Dehant, M. Pätzold (2007), First numerical ephemerides of the two Martian moons. Astronom. Astrophys. 463 (3), 1075-1084.
  • Lemoine, F.G. (1992), Mars: The dynamics of orbiting satellites and gravity model development, Ph.D. thesis, Univ. of Colorado, Boulder, CO.
  • Marty, J.C., G. Balmino, P. Rosenblatt, J. Duron, S. LeMaistre, A. Rivoldini, V. Dehant, T. Van Hoolst (2009), Martian gravity field model and its time variations from MGS and Odyssey data, Plan. & Space Sci., 57, 350-363.
  • Marty, J.C., S. Loyer, F. Perosanz, F. Mercier, G. Bracher, B. Legresy, L. Portier, H. Capdeville, F. Fund, J.M. Lemoine, R. Biancale (2011), GINS : the CNES/GRGS GNSS scientific software, 3rd International Colloquium Scientific and Fundamental Aspects of the Galileo Programme, 31 Aug.-2 Sept. 2011, Copenhagen, Denmark. ESA Proceedings WPP326.
  • Mazarico, E.M. (2008), Study of the Martian upper atmosphere using radio tracking data, PhD thesis, MIT, pp. 1-268.
  • Mazarico, E.M., M.T. Zuber, F.G. Lemoine, D.E. Smith (2009), Effects of Self-Shadowing on Nonconservative Force Modeling for Mars Orbiting Spacecraft. J. Spacecraft Rockets, Vol. 46, No. 3, pp. 662-669.
  • Moyer, T. D. (2000), Formulation for observed and computed values of Deep Space Network data types for navigation, Monograph 2, Deep Space Communications and Navigation series.
  • Salomon, K.B. (1978), An efficient point-in-polygon algorithm, Computers & Geosciences, Vol. 4, no. 2, pp. 173-175.
  • Seidelmann, P. K., V. K. Abalakin, M. Bursa, M. E. Davies, C. De Bergh, J. H. Lieske, J. Oberst, J. L. Simon, E. M. Standish, P. Stooke, and P. C. Thomas (2002), Report of the IAU/IAG Working Group on cartographic coordinates and rotational elements of the planets and satellites: 2000, Celest. Mech. Dyn. Astron., 82, pp. 83-111.
  • Ziebart, M. (2001), High Precision Analytical Solar Radiation Pressure Modelling for GNSS Spacecraft. PhD thesis, University of East London.
  • Ziebart, M., S. Adhya, A. Sibthorpe, S. Edwards, and P. Cross (2005). Combined radiation pressure and thermal modelling of complex satellites: Algorithms and on-orbit tests, Advances in Space Research, 36(3):424-430.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-26775949-3c81-44d4-b541-995fc48834d6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.