Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | No. 126 | 5--16
Tytuł artykułu

Non-food use of solid residues from the dairy industry as a binder in dry-formed fiberboard technology

Treść / Zawartość
Warianty tytułu
PL
Nieżywnościowe wykorzystanie stałych pozostałości z przemysłu mleczarskiego jako spoiwa w technologii płyt pilśniowych suchoformowanych
Języki publikacji
EN
Abstrakty
EN
Non-food use of solid residues from the dairy industry as a binder in dry-formed fiberboard technology. The research investigated the possibility of using solid residues from the dairy industry as a binder in dry-formed fiberboard technology. The scope of work included the production of boards with a mass content of milk powder of 0%, 10%, 12%, 15%, and 20% (concerning the totally dry mass of wood fibers) and studying their selected physical and mechanical properties. The results show that the properties of the produced boards are related to the mass amount of the binder, and that is, using the right amount of binder makes it possible to obtain values that meet the requirements of the relevant European standards.
PL
Nieżywnościowe wykorzystanie stałych pozostałości z przemysłu mleczarskiego jako spoiwa w technologii płyt pilśniowych suchoformowanych. Celem badań było określenie możliwości wykorzystania stałych pozostałości poprodukcyjnych z przemysłu mleczarskiego jako spoiwa w technologii płyt pilśniowych suchoformowanych. Zakres prac obejmował wytworzenie płyt o udziale masowym mleka w proszku 0%, 10% 12%, 15% i 20% (w odniesieniu do masy całkowicie suchych włókien drzewnych) oraz zbadanie ich wybranych właściwości fizycznych i mechanicznych. Uzyskane wyniki pokazują, że właściwości wytworzonych płyt są związane z ilością masową spoiwa i że stosując odpowiednią ich ilość można uzyskać wartości spełniające wymagania odpowiednich norm europejskich.
Słowa kluczowe
Wydawca

Rocznik
Tom
Strony
5--16
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
  • Faculty of Wood Technology, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
  • Department of Technology and Entrepreneurship in Wood Industry, Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
Bibliografia
  • 1. BADIN, N., CAMPEAN, M., LENGYEL, K., ISPAS, M., AND BEDELEAN, B. (2018). “Property improvement of thin high-density fiberboard panels used as door-skins,” BioResources, 13(1), 1042–1054. DOI: 10.15376/biores.13.1.1042-1054.
  • 2. BARTOSZUK, K., AND WRONKA, A. (2023). “Influence of the content of recycled artificial leather waste particles in particleboards on their selected properties,” Annals of WULS, Forestry and Wood Technology, 134, 124–134. DOI: 10.5604/01.3001.0053.9129.
  • 3. BEG, M. D. H., PICKERING, K. L., AND WEAL, S. J. (2005). “Corn gluten meal as a biodegradable matrix material in wood fibre reinforced composites,” Mat. Sci. Engin. 412(1-2), 7-11. DOI: 10.1016/j.msea.2005.08.015.
  • 4. BORYSIEWICZ, I., AND KOWALUK, G. (2023). “Selected properties of MDF boards bonded with various fractions of recycled HDPE particles,” Annals of WULS, Forestry and Wood Technology, 123, 18–29. DOI: 10.5604/01.3001.0053.9306.
  • 5. BORYSIUK, P., AURIGA, R., AND KOŚKA, P. (2019). “Influence of the filler on the density profile of wood polymer composites,” Annals of WULS, Forestry and Wood Technology, 106(106), 31–37. DOI: 10.5604/01.3001.0013.7734.
  • 6. DASIEWICZ, J., AND KOWALUK, G. (2023). “Characteristics of high-density fibreboard produced with the use of rice starch as a binder,” Annals of WULS, Forestry and Wood Technology, 122(Burrell 2003), 169–181. DOI: 10.5604/01.3001.0053.9299.
  • 7. DASIEWICZ, J., AND KOWALUK, G. (2022). “Selected aspects of production and characterization of layered biopolymer composite bonded with a cellulose-based binder,” Annals of WULS - SGGW. Forestry and Wood Technology, 119, 24–34. DOI: 10.5604/01.3001.0016.0519.
  • 8. EN 310. (1993). Wood-Based Panels. Determination of Modulus of Elasticity in Bending and of Bending Strength, European Committee for Standardization, Brussels, Belgium.
  • 9. EN 317. (1993). Particleboards and fibreboards - Determination of swelling in thickness after immersion in water, European Committee for Standardization, Brussels, Belgium.
  • 10. EN 319. (1993). Particleboards and Fibreboards. Determination of Tensile Strength Perpendicular to the Plane of the Board, European Committee for Standardization, Brussels, Belgium.
  • 11. EN 320. (2011). Particleboards and fibreboards - Determination of resistance to axial withdrawal of screws, European Committee for Standardization, Brussels, Belgium.
  • 12. EN 382-2. (1993). Fibreboards - Determination of surface absorption - Part 2: Test method for hardboards, European Committee for Standardization, Brussels, Belgium.
  • 13. EN 622-5. (2010). Fibreboards. Specifications. Part 5: Requirements for dry process boards (MDF), European Committee for Standardization, Brussels, Belgium.
  • 14. GUMOWSKA, A., AND KOWALUK, G. (2023). “Physical and Mechanical Properties of High-Density Fiberboard Bonded with Bio-Based Adhesives,” Forests, 14(1). DOI: 10.3390/f14010084.
  • 15. HAZIM, M., AMINI, M., HASHIM, R., SULAIMAN, N. S., MOHAMED, M., AND SULAIMAN, O. (2020). “Citric Acid-modified Starch as an Environmentally Friendly Binder for Wood Composite Making,” BioResources, 15(2), 4234–4248.
  • 16. MARY, A., BLANCHET, P., PEPIN, S., CHAMBERLAND, J., AND LANDRY, V. (2024). “Upcycling of Protein Concentrates from Industrial Byproducts into Polyurethane Wood Adhesives,” BioResources. DOI: 10.15376/biores.19.1.1165-1189.
  • 17. NORSTRÖM, E., FOGELSTRÖM, L., NORDQUIST, P., KHABBAZ, F., AND MALMSTRÖM, E. (2014). “Gum dispersions as environmentally friendly wood adhesives,” Ind. Crops Prod. 52, 736-744. DOI: 10.1016/j.indcrop.2013.12.001.
  • 18. PAWLIK, J., AND KOWALUK, G. (2023). “Influence of the amount and type of anti-adhesive agent on selected properties of fibreboards,” Annals of WULS, Forestry and Wood Technology, 123(2014), 153–163. DOI: 10.5604/01.3001.0054.3095.
  • 19. PESENTI, H., TORRES, M., OLIVEIRA, P., GACITUA, W., AND LEONI, M. (2017). “Exploring Ulex europaeus to produce nontoxic binderless fibreboard,” BioResources, 12(2), 2660–2672. DOI: 10.15376/biores.12.2.2660-2672.
  • 20. ROSA, P., AND KOWALUK, G. (2022). “Selected features of medium density fiberboards produced with the use of plant binder,” Annals of WULS, Forestry and Wood Technology, 120(120), 27–36. DOI: 10.5604/01.3001.0016.2168.
  • 21. SHUKLA, R., AND CHERYAN, M. (2001). “Zein: The industrial protein from corn,” Ind. Crop Prod. 13(3), 171-192. DOI: 10.1016/s0926-6690(00)00064-9.
  • 22. SULAIMAN, N. S., HASHIM, R., AMINI, M. H. M., SULAIMAN, O., AND HIZIROGLU, S. (2013). “Evaluation of the properties of particleboard made using oil palm starch modified with epichlorohydrin,” BioResources, 8(1), 283–301. DOI: 10.15376/biores.8.1.283-301.
  • 23. THENG, D., EL MANSOURI, N. E., ARBAT, G., NGO, B., DELGADO-AGUILAR, M., PÈLACH, M. ÀNGELS, FULLANA-I-PALMER, P., AND MUTJÉ, P. (2017). “Fiberboards made from corn stalk thermomechanical pulp and kraft lignin as a green adhesive,” BioResources, 12(2), 2379–2393. DOI: 10.15376/biores.12.2.2379-2393.
  • 24. WRONKA, A., RDEST, A., AND KOWALUK, G. (2020). “Influence of starch content on selected properties of hardboard,” Annals of WULS, Forestry and Wood Technology, 109(109), 48–52. DOI: 10.5604/01.3001.0014.3160.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-264f2e4d-0ed9-4a6f-a970-ca7a95049c20
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.