Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | Vol. 49, nr 3 | 345--356
Tytuł artykułu

Semi-slant submersions from almost product Riemannian manifolds

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we introduce semi-slant submersions from almost product Riemannian manifolds onto Riemannian manifolds. We give some examples, investigate the geometry of foliations which are arisen from the definition of a Riemannian submersion. We also find necessary and sufficient conditions for a semi-slant submersion to be totally geodesic.
Wydawca

Rocznik
Strony
345--356
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
Bibliografia
  • [1] P. Baird, J. C. Wood, Harmonic Morphisms between Riemannian Manifolds, Oxford Science Publications, 2003.
  • [2] J. P. Bourguignon, H. B. Lawson, A mathematician’s visit to Kaluza–Klein theory, Rend. Sem. Mat. Univ. Politec. Torino, Special Issue (1989), 143–163.
  • [3] J. P. Bourguignon, Stability and isolation phenomena for Yang–Mills fields, Comm. Math. Phys. 79 (1981), 189–230.
  • [4] M. Falcitelli, S. Ianus, A. M. Pastore, Riemannian Submersions and Related Topics, World Scientific, 2004.
  • [5] A. Gray, Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mech. 16 (1967), 715–737.
  • [6] Y. Gündüzalp, Slant submersions from almost product Riemannian manifolds, Turkish J. Math. 37 (2013), 863–873.
  • [7] S. Ianus, R. Mazzocco, G. E. Vilcu, Riemannian submersions from quaternionic manifolds, Acta Appl. Math. 104 (2008), 83–89.
  • [8] S. Ianus, M. Visinescu, Kaluza-Klein theory with scalar fields and generalised Hopf manifolds, Classical Quantum Gravity 4 (1987), 1317–1325.
  • [9] S. Ianus, M. Visinescu, Space-time compactification and Riemannian submersions, The mathematical heritage of C. F. Gauss, World Sci. Publ., River Edge, NJ, (1991), 358–371.
  • [10] M. T. Mustafa, Applications of harmonic morphisms to gravity, J. Math. Phys. 41 (2000), 6918–6929.
  • [11] B. O’Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459–469.
  • [12] K. S. Park, H-slant submersions, Bull. Korean Math. Soc. 49 (2012), 329–338.
  • [13] B. Şahin, Slant submersions from almost Hermitian manifolds, Bull. Math. Soc. Sci. Math. Roumanie 54(102) (2011), 93–105.
  • [14] B. Şahin, Semi-invariant submersions from almost Hermitian manifolds, Canad. Math. Bull. 54(3) (2011).
  • [15] B. Şahin, Slant submanifolds of an almost product Riemannian manifold, J. Korean Math. Soc. 43(4) (2006), 717–732.
  • [16] B. Watson, Almost Hermitian submersions, J. Differential Geom. 11 (1976), 147–165.
  • [17] B. Watson, G, G’-Riemannian submersions and nonlinear gauge field equations of general relativity, Global Analysis on Manifolds, Teubner-Texte Math., Teubner, Leipzig, 57 (1983), 324–249.
  • [18] K. Yano, M. Kon, Structures on Manifolds, World Scientific, 1984.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-264bc9b9-42a9-475b-8eca-f14558620a8a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.