Warianty tytułu
Języki publikacji
Abstrakty
Liao, Peng and Nadarajah [ J. Appl. Probab. 50 (2013), 900-907] derived asymptotic expansions for the partial maximum of a random sample from the logarithmic skew-normal distribution. Here, we derive asymptotic expansions for moments of the partial maximum using optimal norming constants. These expansions can be used to deduce convergence rates of moments of the normalized maxima to the moments of the corresponding extreme value distribution. A numerical study is made to compare the actual values of moments with their asymptotics, which shows that the convergence is exceedingly slow, and adjustment is needed whenever we use the limits to replace moments of the partial maximum.
Czasopismo
Rocznik
Tom
Strony
41--61
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
- University of Shanghai for Science and Technology Business School, University of Shanghai for Science and Technology, Shanghai, 200093, China, liaoxin2010@163.com
autor
- Southwest University School of Mathematics and Statistics Southwest University, 400715 Chongqing, China, pzx@swu.edu.cn
autor
- University of Manchester Department of Mathematics, University of Manchester, Manchester M13 9PL, United Kingdom, mbbsssn2@manchester.ac.uk
Bibliografia
- 1. Azzalini (1985), A class of distributions which includes the normal ones, Scand. J. Statist. 12, 171-178.
- 2. Azzalini, T. D. Cappello and S. Kotz (2003), Log-skew normal and log-skew-t distributions as models for family income data, J. Income Distribution 11, no. 3, 12-20.
- 3. Bolance, M. Guillen, E. Pelican and R. Vernic (2008), Skewed bivariate models and nonparametric estimation for the CTE risk measure, Insurance Math. Econom. 43, 386-393.
- 4. B. Cael and A. Mashayek (2008), Log-skew-normality of ocean turbulence, Phys. Rev. Lett. 126, 1-6.
- 5. Gómez-Déniz, N. Dávila-Gárdenes and J. Boza-Chirino (2021), Modelling expenditure in tourism using the log-skew-normal distribution, Current Issues in Tourism (online, doi: 10.1080/13683500.2021.1960282).
- 6. Gómez-Déniz and E. Caldeírn-Ojeda (2020), On the usefulness of the logarithmic skew normal distribution for describing claims size data, Math. Problems Engrg. (online, doi: 10.1155/2020/1420618).
- 7. J. Guo, P. Cao, J. Wu, Z. Liu and J. Yang (2019), Analytical gate dely variation model with temperature effects in near-threshold region based on log-skew-normal distribution, Electronics 8, no. 5, 15 pp.
- 8. Y. Huang and M. S. Ku (2010), Asymmetry effect of particle size distribution on content uniformity and over-potency risk in low-dose solid drugs, J. Pharmaceutical Sci. 99, 4351-4362.
- 9. J. A. Jiménez and V. Arunachalam (2015), Option pricing based on a log-skew-normal mixture, Int. J. Theoret. Appl. Finance 18, no. 8, art. 1550051, 22 pp.
- 10. X. Liao and Z. Peng (2012), Convergence rates of limit distribution of maxima of lognormal samples, J. Math. Anal. Appl. 395, 643-653.
- 11. X. Liao, Z. Peng and S. Nadarajah (2013), Tail properties asymptotic of distribution of maximum of logarithmic skew-normal distribution, J. Appl. Probab. 50, 900-907.
- 12. X. Liao, Z. Peng and S. Nadarajah (2014), Asymptotic expansions for moments of skew-normal extremes, Statist. Probab. Lett. 83, 1321-1329.
- 13. G. Lin and J. Stoyanov (2009), The logarithmic skew-normal distributions are moment-indeterminate, J. Appl. Probab. 46, 909-916.
- 14. J. R. McCord (1964), On asymptotic moments of extreme statistics, Ann. Math. Statist. 64, 1738-1745.
- 15. K. A. Nair (1981), Asymptotic distribution and moments of normal extremes, Ann. Probab. 9, 150-153.
- 16. J. Pickands (1968), Moment convergence of sample extremes, Ann. Math. Statist. 39, 881-889.
- 17. J. Pu, X. Liao and Z. Peng (2015), Asymptotic expansions of the moments of extremes from general error distribution, J. Math. Anal. Appl. 422, 1131-1145.
- 18. S. I. Resnick (1987), Extreme Values, Regular Variation and Point Processes. Springer, New York.
- 19. K. Wang, S. Yu, and P. Wei (2019), A novel moment method using the log skew normal distribution for particle coagulation, J. Aerosol Sci. 134, 95-108.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-2641a8b8-6ad9-47dc-b773-79adb0fff141