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In the peridynamic (PD) theory established by Silling and his collab-
orates, the equation of motion is incompatible with the traction boundary condi-
tions. In order to impose boundary conditions, a technique used is to set a fictitious
boundary layer and transforming traction into a body force. This technique is easy
to operate, but it is difficult to adapt to complex boundary constraints. To solve
this problem, the new peridynamic governing equations with boundary conditions
(PDBC) are introduced and simplified. In PDBC, the influence of the boundary con-
ditions is confined to a boundary layer with finite thickness, by which, the surface
correction can be shunned. A nonlinear implicit solver for PDBC is implemented.
This solver is used to simulate the plane stress problems. The elastic deformations
of a rectangular plate under three different boundary conditions, i.e., traction, dis-
placement and mixed boundary conditions, are solved based on the bond-based and
ordinary state-based constitutive models. Comparison of computational results be-
tween PDBC, the classical elastic theory and the original PD verifies the applicability
and accuracy of PDBC and the implicit algorithm.
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1. Introduction

Peridynamics (PD) was first proposed by Silling [1, 2] as a new non-local
continuum mechanics theory. Since the PD theory relaxes the requirement of
continuity of a displacement field, it becomes relatively friendly to analyze de-
formation accompanied with evolution of discontinuities caused by damage, frac-
ture and impact failure, which are difficult to analyze in the classical continuum
mechanical system. So, it has been promoted rapidly in the past two decades.
A peridynamic approach can be considered as a continuum version of molecular
dynamics [3], as material particles interact within finite distances through an
influence function [3–5]. The range over which a material particle interacts with
other material particles around it is called the neighborhood, denoted Hx [2].
The radius δ of Hx is called the ’horizon’ [1, 3, 4], which is a model parameter
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to measure nonlocality. The interactions become more local with a decreasing
horizon, and the PD theory converges to the classical elasticity theory when the
horizon approaches zero [6]. The PD theory is sensitive to the horizon and the
influence function. Consequently, Seleson and Parks [5] specifically studied
the role of an influence function, and Bobaru and Hu [7] discussed the value of
the horizon. In the numerical calculation, Silling suggested the grid spacing ∆
being taken as one-third of δ [4, 8].

The PD theory shuns the concepts of strain and stress and only involves rel-
ative displacement and internal long-range forces. In the governing equations of
PD, a spatial integral of the relative displacement is used to replace the spatial
derivative of displacement in the classical theory. As a result, PD does not involve
the natural boundary condition, that is traction boundary condition [8]. In order
to exert the boundary conditions, Silling suggested a technique of the fictitious
boundary layer with thickness δ, [4, 8] by which, the displacement constraint and
traction exerted on the boundary surface can equivalently be transferred into the
displacement and body force in the fictitious boundary layer. Although good re-
sults can be obtained by this technique, it is not natural in physics to transfer the
boundary traction into the body force uniformly distributed within the fictitious
boundary. More importantly, this technique cannot guarantee that the total an-
gular momentum equilibrium is strictly satisfied, see Appendix A. In order to
deal with boundary conditions more naturally, a lot of efforts have been made.
For example, Madenci and Dorduncu [9, 10] proposed a weak-form govern-
ing equations of peridynamics, which permit direct imposition natural boundary
conditions.Huang [11] developed a peridynamic equation of motion with bound-
ary traction, from which, the mixed boundary conditions were deduced. Inspired
by [11], the peridynamic equation of motion with boundary traction [12, 13, 45]
was further applied to analyze some benchmark problems of elastic deformation
and rupture. Based on the Taylor expansion strategy, Scabbia et al. [14, 15]
put forward a technique to impose boundary conditions in ordinary state-based
peridynamics. A Peridynamic Galerkin method allowing direct imposition of
boundary conditions was also proposed in [43] based on the weak form of PD.
In [44], a technique directly imposing boundary conditions on the outer layer
was introduced by the peridynamic differential operator (PDDO) [44].

Although an endeavor has been undertaken to find the analytic solution
of PD, for example, Silling et al. studied the deformation of bar [3], Weckner
et al. obtained the integral expression of the three-dimensional PD solution [16],
and Mikata studied the analytical solutions of peristatic of a 1D infinite rod [17],
it is very difficult to analytically solve the system of integro-differential equa-
tions. Therefore, a common treatment tends to be numerical computation, but
this makes dealing with boundary conditions trickier. To find the numerical so-
lution of PD, it is necessary to select the suitable spatial discrete and temporal
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discrete scheme. The spatial discrete scheme can be adopted by either the mesh-
free method or the finite element method. The temporal discrete scheme can be
roughly divided into explicit and implicit formats, although the mixed explicit-
implicit time integration scheme has been proposed in literature [18]. In the ex-
plicit scheme, the results of the next time step can be directly given by the data
of the current time step, such as the central difference scheme. In the implicit
scheme, the results of the next time step need to be acquired by iteration, and it
usually causes the large-matrix operations, such as the Newton–Raphson scheme.
In the early days, the meshfree spatial discrete scheme was usually matched
with the temporal explicit scheme. For example, Silling [4, 19] firstly used this
method to solve PD dynamic problems. Sequentially, the adaptive dynamic re-
laxation method (ADR) [20] was applied to solve PD quasi-static problems while
the explicit integration scheme was also employed to simulate high-velocity im-
pact fracturing in [21]. Owing to the similarity between the discrete PD scheme
and molecular dynamics, the molecular dynamics package LAMMPS [22] can be
directly used to solve the PD problems. The implicit scheme was also used to
match the meshfree spatial discrete scheme. Mitchel used an implicit method
to solve dynamic and quasi-static problems based on the ordinary state-based
plasticity [23] and viscoelasticity model [24]. The implicit method can be also
used to solve quasi-static problems of the non-ordinary state-based with finite
deformation in [25]. Lopez [26] utilized Newmark-β method in PD simulation.

When the finite element method is adopted for spatial discretization, the
stiffness matrix assembly method of the finite element can be used in the im-
plicit scheme.Gerstle [27] performed the PD simulation for concrete structures
using the finite element discretization. Gunzburger [28] proposed discontinu-
ous Galerkin methods to solve PD discontinuity problems. For many local and
non-local coupled models, the spatial discretization based on the finite element
method is widely used in the explicit or implicit scheme. Some examples can be
found in Silling [8], Zingales [29] and Han et al. [30–32].

In this paper, the concrete formulation of the peridynamic equation of mo-
tion with the boundary condition (PDBC) is determined by reducing the three
undetermined scalar transfer functions [11] into a scalar generating function. In
addition, we use MATLAB to implement a nonlinear implicit solver.

The outline of the paper is as follows. In Section 2, peridynamics compati-
ble with boundary conditions is introduced. Section 3 is divided into four parts.
Firstly, the balance equation of energy is proved to have the same form as that of
original PD after the boundary conditions are introduced into the peridynamic
equation of motion. This ensures that the constitutive equation of original PD
can be directly inherited by PDBC. Then, the bond-based constitutive equa-
tion and the ordinary state-based constitutive equation are given, respectively.
Finally, the transfer functions involved in PDBC are constructed. In Section 4,
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the implicit numerical algorithm used to solve PDBC is presented. In Section 5,
PDBC is used to calculate the benchmark problems of a rectangular plate under
three types of boundary conditions and comparison with the classical elastic-
ity theory and original PD is given. Finally, we close this paper with conclu-
sions.

2. New peridynamic equation of motion

2.1. Peridynamic equation of motion with boundary conditions

In the peridynamic theory proposed by Silling, the equation of motion can
be expressed by the following integro-differential form [2]:

(2.1) ρ(x)ü(x, t) =

∫
Hx

{T[x, t]〈ξ〉 −T[x′, t]〈−ξ〉} dV ′x + b(x, t),

where ξ = x′ − x; Hx is a spherical neighborhood of x with radius δ. In Eq.
(2.1), the displacement field u is of the Lagrangian form and the volume integral
is over the initial configuration.

Equation (2.1) is inconsistent with the traction boundary condition. In order
to offset this deficiency, a new peridynamic equation of motion is proposed in [11],
which reads:

ρ(x)ü(x, t) =

∫
∂Ω

{G(x,x′′′)p(x′′′, t) + L(x,x′′′)y′′′(x′′′, t)} dAx′′′(2.2)

+

∫
Hx

{T[x, t]〈ξ〉 −T[x′, t]〈−ξ〉} dVx′ + b(x, t),

where ∂Ω denotes the surface of peridynamic media Ω in the initial configuration,
x′′′ is a position vector of a particle on ∂Ω, y′′′(x′′′, t) = x′′′ + u′′′(x′′′, t) is the
position vector of x′′′ in the deformed configuration and is shortened to y′′′, that
is, y′′′ is the motion of ∂Ω, and u′′′ is a displacement field of the Lagrangian
form; p(x′′′, t) is the traction prescribed on ∂Ω, G(x, x′′′) with the dimension
of 1/m3 and L(x, x′′′) with the dimension of N/m6 are the transfer function of
the boundary traction and of the boundary displacement constraint, respectively.
They transfer the effects of the traction and the displacement constraint into
every particle within material.

It has been proved in [11] that Eq. (2.2) satisfies the conservation law of
momentum and is a form-invariant under the Galileo transformation, when:∫

Ω

G(x,x′′′) dVx = 1,(2.3)
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Ω

L(x,x′′′) dVx = 0,(2.4)

∫
∂Ω

L(x,x′′′) dAx′′′ = 0.(2.5)

In addition, it is also certified in [11] that in order to make Eq. (2.2) compati-
ble with the conservation law of angular momentum, p(x′′′, t), y′′′(x′′′, t), y(x, t)
must satisfy the constraints below

(2.6) J(x,x′′′)[y′′′(x′′′, t)− y(x, t)] = G(x,x′′′)p(x′′′, t) + L(x,x′′′)y′′′(x′′′, t),

where J(x, x′′′) is the boundary influence function and with the dimension
of N/m6. In fact, Eq. (2.6) can be regarded as a constitutive equation with
relevance to the traction and displacement constraints on the boundary surface.
So J(x, x′′′) is also a stiffness coefficient. It is worth noting that the existence
of function L(x, x′′′) ensures that Eq. (2.2) satisfies the equilibrium of angular
momentum, so it cannot be zero.

When x = x′′′, Eq. (2.6) reduces to

(2.7) G(x′′′,x′′′)p(x′′′, t) + L(x′′′,x′′′)y′′′(x′′′, t) = 0.

Since y′′′(x′′′, t) and p(x′′′, t) are correlated with each other, the two equalities
in [11], i.e.,

(2.8)

{
G(x′′′,x′′′) = 0,

L(x′′′,x′′′) = 0

are no longer considered to be valid. In other words, the constraints on G(x, x′′′)
and L(x, x′′′) in [11] are relaxed in this paper.

Combining Eq. (2.6), the first term at the right end of Eq. (2.2) can be used
to represent the displacement, traction or mixed boundary conditions. Firstly, if
the displacement boundary condition y′′′(x′′′, t) = y(x′′′, t) = x′′′ + u(x′′′, t) is
given, then substituting Eq. (2.6) into Eq. (2.2) leads to

ρ(x)ü(x, t) =

∫
∂Ωu

J(x,x′′′)[y(x′′′, t)− y(x, t)] dAx′′′(2.9)

+

∫
Hx

{T[x, t]〈ξ〉 −T[x′, t]〈−ξ〉} dVx′ + b(x, t),

which is the peridynamic equation of motion with the displacement boundary
condition. In this case, ∂Ωu = ∂Ω.
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Then, if the traction boundary condition p(x′′′, t) = p(x′′′, t) is given,
y′′′(x′′′, t) can be acquired by solving Eq. (2.6), that is

(2.10) y′′′(x′′′, t) =
G(x,x′′′)

J(x,x′′′)− L(x,x′′′)
p(x′′′, t)+

J(x,x′′′)

J(x,x′′′)− L(x,x′′′)
y(x, t).

By substituting Eq. (2.10) into Eq. (2.2), the peridynamic equation of motion
with the traction boundary condition is given as follows

ρ(x)ü(x, t) =

∫
∂Ωp

{α(x,x′′′)p(x′′′, t) + β(x,x′′′)y(x, t)} dAx′′′(2.11)

+

∫
Hx

{T[x, t]〈ξ〉 −T[x′, t]〈−ξ〉} dVx′ + b(x, t),

where ∂Ωp = ∂Ω, and

(2.12)


α(x,x′′′) =

J(x,x′′′)G(x,x′′′)

J(x,x′′′)− L(x,x′′′)
,

β(x,x′′′) =
J(x,x′′′)L(x,x′′′)

J(x,x′′′)− L(x,x′′′)
.

Clearly, J(x, x′′′) cannot be equal to L(x, x′′′) to guarantee that Eq. (2.12) is
non-singular.

Finally, let ∂Ωu ∪ ∂Ωp = ∂Ω and ∂Ωu ∩ ∂Ωp = ∅. Combining Eq. (2.9) with
Eq. (2.11), we have

ρ(x)ü(x, t) =

∫
∂Ωu

J(x,x′′′)[y(x′′′, t)− y(x, t)] dAx′′′(2.13)

+

∫
∂Ωp

{α(x,x′′′)p(x′′′, t) + β(x,x′′′)y(x, t)} dAx′′′

+

∫
Hx

{T[x, t]〈ξ〉 −T[x′, t]〈−ξ〉} dVx′ + b(x, t).

As a result, we acquire the peridynamic equation of motion with the mixed
boundary condition. Clearly, α(x, x′′′) and β(x, x′′′) has the dimension of 1/m3

and N/m6, respectively.

2.2. Simplification of the peridynamic equation of motion with
boundary conditions

From Eq. (2.6), it can be seen that J(x, x′′′) and L(x, x′′′) have the same
dimension, hence, we set

(2.14) J(x,x′′′) = χL(x,x′′′),
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where χ is a dimensionless constant, and it cannot be equal to 1 and 0. Equations
(2.14), (2.9), (2.11) and Eq. (2.13) lead to

ρ(x)ü(x, t) = χ

∫
∂Ωu

L(x,x′′′)[y(x′′′, t)− y(x, t)] dAx′′′(2.15)

+

∫
Hx

{T[x, t]〈ξ〉 −T[x′, t]〈−ξ〉} dVx′ + b(x, t),

where ∂Ωu = ∂Ω,

ρ(x)ü(x, t) =
χ

χ− 1

∫
∂Ωp

{G(x,x′′′)p(x′′′, t) + L(x,x′′′)y(x, t)} dAx′′′(2.16)

+

∫
Hx

{T[x, t]〈ξ〉 −T[x′, t]〈−ξ〉} dVx′ + b(x, t),

where ∂Ωp = ∂Ω,

ρ(x)ü(x, t) = χ

∫
∂Ωu

L(x,x′′′)[y(x′′′, t)− y(x, t)] dAx′′′(2.17)

+
χ

χ− 1

∫
∂Ωp

{G(x,x′′′)p(x′′′, t) + L(x,x′′′)y(x, t)} dAx′′′

+

∫
Hx

{T[x, t]〈ξ〉 −T[x′, t]〈−ξ〉} dVx′ + b(x, t),

where ∂Ωu ∪ ∂Ωp = ∂Ω and ∂Ωu ∩ ∂Ωp = ∅.
Because of the constraint of Eq. (2.5), Eq. (2.15) and Eq. (2.16) further

reduce to:

ρ(x)ü(x, t) = χ

∫
∂Ωu

L(x,x′′′)y(x′′′, t) dAx′′′(2.18)

+

∫
Hx

{T[x, t]〈ξ〉 −T[x′, t]〈−ξ〉} dVx′ + b(x, t),

ρ(x)ü(x, t) =
χ

χ− 1

∫
∂Ωp

G(x,x′′′)p(x′′′, t) dAx′′′(2.19)

+

∫
Hx

{T[x, t]〈ξ〉 −T[x′, t]〈−ξ〉} dVx′ + b(x, t).

Equations (2.17), (2.18) and Eq. (2.19) are called PDBC.
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3. Peridynamic constitutive models of elastic deformation and transfer
functions

3.1. Balance equation of energy

Let v = v(x) is the velocity field within material, and ε is internal energy
of per unit mass. Only elastic deformation is concerned, in peridynamics with
boundary traction, total energy equilibrium [33] can be represented as

(3.1)
D

Dt

∫
Ω

(
1

2
ρv2 + ρε

)
dV

=

∫
Ω

{∫
∂Ω

[G(x,x′′′)p(x′′′, t) + L(x,x′′′)y′′′(x′′, t)] dAx′′′

}
· v dVx +

∫
Ω

b · v dV.

Equation (3.1) can be further written as

(3.2)
∫
Ω

ρü · v dV +

∫
Ω

ρε̇ dV

=

∫
Ω

{∫
∂Ω

[G(x,x′′′)p(x′′′, t) + L(x,x′′′)y′′′(x′′′, t)] dAx′′′

}
· v dVx +

∫
Ω

b · v dV .

In terms of Eq. (2.2), Eq. (3.2) can reduce to

(3.3)
∫
Ω

ρε̇ dV =

∫
Ω

{∫
Hx

{T[x′, t]〈−ξ〉 −T[x, t]〈ξ〉} dVx′
}
· v dVx.

Since Hx ⊂ Ω is a compact supported set of T[x′, t]〈−ξ〉 and T[x, t]〈ξ〉, Eq. (3.3)
can be written as

(3.4)
∫
Ω

ρε̇ dV =

∫
Ω

{∫
Ω

{T[x′, t]〈−ξ〉 −T[x, t]〈ξ〉} dVx′
}
· v dVx.

Interchanging x′ and x, and then using a definition of the compact supported
set, we have

(3.5)
∫
Ω

ρε̇ dV =

∫
Ω

{∫
Hx

T[x, t]〈ξ〉 · [v(x′)− v(x)] dVx′

}
dVx.

Localization leads to the local statement of the balance equation of energy as
follows

(3.6) ρε̇ =

∫
Hx

T[x, t]〈ξ〉 · [v(x′)− v(x)] dVx′ ,
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which has the same form as that in peridynamics without boundary condi-
tions [33], and it is a base to determine the peridynamic constitutive models
of hyperelastic material. Therefore, hyperelastic constitutive models in peridy-
namics without boundary conditions can be inherited without modification by
peridynamics with boundary conditions.

3.2. Bond-based constitutive model

The bond-based (BB) constitutive models have been established by
Silling [1]. They characterize the spring-like interactions between the material
point x and x′. A typical BB constitutive model is the prototype microelastic
(PM) model, which reads [4, 34]

(3.7) f(y,y′) =C(x,x′)eM =
c

|ξ|
eM = csM = c

|y′ − y| − |ξ|
|ξ|

y′ − y

|y′ − y|
, |ξ| ≤ δ,

0 otherwise,

where f(y, y′) is the force density vector [1], C(x,x′) the so-called micromodulus,
c called the spring constant or the bond-constant, e = |y′ − y| − |ξ| the bond
extension, s = (|y′−y|− |ξ|)/|ξ| called the bond stretch or the bond strain, and
M a unit vector in the direction of the deformed bond from x to x′.

In the PM model, the only peridynamic model parameter c can be calibrated
through equivalence of the strain energy density. After calibration, it can be
written as [34]

(3.8) c =



12E

πδ4
3-dimension,

9E

πhδ3
2-dimension plane stress,

48E

5πhδ3
2-dimension plane strain,

2E

h1δ2
1-dimension,

where E is the Young modulus, h is the plate thickness, and h1 is the cross-
sectional area of the plate. PM model treats each bond as a linear elastic spring.
Therefore, the bulk material properties are also elastic.

The distinguishing feature of BB models is that each bond force density
f(y,y′) depends only on y′−y. Consequently, in BB models, the Poisson ratio of
3D and 2D plane strain problems are fixed at 1/4, while that of 2D plane stress
problem are fixed at 1/3.
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3.3. Ordinary state-based constitutive model

The state-based (SB) constitutivemodels are established firstly by Silling [2].
SB models associate a force state at x with the collective deformation of the entire
family of x, in which the restriction of Poisson’s ratio is relaxed to some extent.
SB models contains the ordinary state-based (OSB) models and the non-ordinary
state-based (NOSB) models. In the OSB models, the bond force density vector
T〈ξ〉 is always parallel to the deformed bond Y〈ξ〉, namely T = tM [2], where
ξ is any bond in the family; T is a force vector state field; Y is a deformation
vector state field; t is a force scalar state field;M is the deformed direction vector
state field (in BB models, M denoted M).

A reformulated OSB model for isotropic elastic material expounded by Mad-
enci and Oterkus is written as [35, 36]

(3.9) T[x, t]〈ξ〉 −T[x′, t]〈−ξ〉 =

{
1
2(A+B)M, |ξ| ≤ δ,
0 otherwise,

where A and B both are two force scalar state, which read

(3.10)



A = 4ω〈|x′ − x|〉
[
d

(
y′ − y

|y′ − y|
· x′ − x

|x′ − x|

)
(aθx) + be

]
=

4δ

|x′ − x|

[
d

(
y′ − y

|y′ − y|
· x′ − x

|x′ − x|

)
(aθx) + b(|y′ − y| − |ξ|)

]
,

B = 4ω〈|x′ − x|〉
[
d

(
y − y′

|y − y′|
· x− x′

|x− x′|

)
(aθx′) + be

]
= 4δ
|x−x′|

[
d

(
y − y′

|y − y′|
· x− x′

|x− x′|

)
(aθx′) + b(|y − y′| − |ξ|)

]
.

In Eq. (3.10), ω=δ/|ξ| is a spherical influence function [2] and e= |y′−y|−|ξ|
is a scalar state describing deformation. θx and θx′ are the dilatations at the point
x and x′, respectively. They can be represented as

(3.11)



θx = d

∫
Hx

[
ω〈|x′−x|〉 |y

′−y|−|x′−x|
|x′−x|

y′−y

|y′−y|
(x′−x)

]
dvx

= d

∫
Hx

[
δ

|x′−x|
|y′−y|−|x′−x|
|x′−x|

y′−y

|y′−y|
(x′−x)

]
dvx,

θx′ = d

∫
Hx′

[
ω〈|x′′−x′|〉 |y

′′−y′|−|x′′−x′|
|x′′−x′|

y′′−y′

|y′′−y′|
(x′′−x′)

]
dvx′

= d

∫
Hx′

[
δ

|x′′−x′|
|y′′−y′|−|x′′−x′|

|x′′−x′|
y′′−y′

|y′′−y′|
(x′′−x′)

]
dvx′ .
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Here x′′ represents the position vector of a particle in the neighborhood of x′

in the initial configuration while y′′ is the position vector of x′′ in the deformed
configuration.

The OSB model above has three peridynamic model parameters, namely
d, a and b. In terms of equivalence of strain energy density, these parameters are
determined by [35, 36]:

d =



9

4πδ4
3-dimension,

2

πhδ3
2-dimension plane stress,

1

2h1δ2
1-dimension,

(3.12)

a =



E(11ν − 4)

6(1− 2ν)(1 + ν)
3-dimension,

E(3ν − 1)

4(1− ν)(1 + ν)
2-dimension plane stress,

0 1-dimension,

(3.13)

b =



15E

4(1 + ν)πδ5
3-dimension,

3E

(1 + ν)πhδ4
2-dimension plane stress,

E

2h1δ3
1-dimension,

(3.14)

where ν is the Poisson ratio.
It can be seen from Eq. (3.14) that parameter b and parameter c satisfy

c = 4bδ. Consequently, when ad = 0, the OSB model reformulated by Madenci
[35, 36] is equivalent to the PM model. In addition, it should be noted that
T[x, t]〈ξ〉 and T[x′, t]〈−ξ〉 are not the acting and reacting forces, although they
are in opposite directions, they are not equal in magnitude.

3.4. Construction of the transfer functions

The transfer functions contain the transfer function of the boundary dis-
placement constraint L(x, x′′′) and the transfer function of the boundary trac-
tion G(x, x′′′). Although there is no unique construction way, in order to re-
duce computational cost, as few undetermined functions as possible should be
introduced to represent L(x, x′′′) and G(x, x′′′). For this, we choose an inte-
grable function q(|x − x′′′|) of two variables to form L(x, x′′′) and G(x, x′′′)
as follows:
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L(x,x′′′) = λ

{
q(|x− x′′′|)

[∫
∂Ω

∫
Ω

q(|x− x′′′|) dVx dAx′′′

]
(3.15)

−
[∫
∂Ω

q(|x− x′′′|) dAx′′′

][∫
Ω

q(|x− x′′′|) dVx
]}
,

G(x,x′′′) =
q(|x− x′′′|)∫

Ω q(|x− x′′′|) dVx
,(3.16)

where q(|x − x′′′|) is called the generating function of the transfer functions,
which is dimensionless due to the following Eq. (3.17). In Eq. (3.15), the intro-
duction of λ is to balance the dimensions on both sides of the equation, so its
value is taken as 1 and the dimension is N/m11. Clearly, L(x, x′′′) and G(x, x′′′)
given by Eq. (3.15) and Eq. (3.16) satisfy the constraints of Eqs. (2.3)–(2.5). To
avoid singularity, we set

(3.17) q(|x− x′′′|) =


δ

|x− x′′′|+ δ
|x− x′′′| ≤ δ,

0 otherwise.

It is not difficult to find that q(|x − x′′′|) in (3.17) is dimensionless, and it
makes the influences of the traction and displacement specified on the boundary
surface confined to the boundary layer with the thickness of δ. Different from
q proposed in [12], Eq. (3.17) has a similar form to the influence function in the
constitutive model Eq. (3.10).

Physically, the effects caused by the prescribed displacement or traction at x′′′

on the boundary surface can be always transmitted to a point x in the interior
of body through a path, even though there is a crack or void between the link
between x′′′ and x. Similar to the influence functions in the peridynamic consti-
tutive equations, the generating function Eq. (3.17) depends only on the distance
between x′′′ and x, and attenuates with the increase of the distance.

4. Numerical algorithm for quasi-static problems

Since there are no large-matrix operations in the explicit solvers, the explicit
solvers based on different schemes, such as the second-order central difference
or the fourth-order Runge–Kutta scheme [18, 35, 37], have been developed and
applied in numerous PD simulations. However, the explicit algorithm is condi-
tionally convergent and stable, and artificial damping coefficients are introduced
in the quasi-static analysis. Compared with the explicit algorithm, the implicit
algorithm has higher accuracy and stability. Thus, we construct a nonlinear im-
plicit algorithm based on the Newton–Raphson scheme [34, 38, 39].
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The meshfree spatial discrete method [4] is used to discretize continuum into
a range of arbitrary shaped subdomains. A collocation point, namely a node, is
set at the centroid of each subdomain. As a result, the spatial discrete form of
the quasi-static case of Eq. (2.17), Eq. (2.18) and Eq. (2.19) is written as:

χ
∑
∂Ωu

L(xi,xk)[ȳ (xk, t)− y (xi, t)]Axk(4.1)

+
χ

χ− 1

∑
∂Ωp

{G(xi,xk)p(xk, t) + L(xi,xk)y(xi, t)}Axk

+
∑
Hxi

{
T[xi, t]〈xj − xi〉 − unT [xj , t]〈xi − xj〉

}
Vxj + b (xi, t) = 0,

χ
∑
∂Ωu

L(xi,xk)y(xk, t)Axk(4.2)

+
∑
Hxi

{
T[xi, t]〈xj − xi〉 −T[xj , t]〈xi − xj〉

}
Vxj + b(xi, t) = 0,

χ

χ− 1

∑
∂Ωp

G(xi,xk)p(xk, t)Axk(4.3)

+
∑
Hxi

{
T[xi, t]〈xj − xi〉 −T[xj , t]〈xi − xj〉

}
Vxj + b(xi, t) = 0.

The same spatial discrete strategy can be applied to acquire the integral value
of L(x, x′′′) and G(x, x′′′). When a constitutive model is nonlinear function
of the displacement, the Newton–Raphson method will be used to obtain the
numerical solution of the displacement. The details of the numerical algorithm
refer to Appendix B.

5. Five benchmark problems in the plane elastic deformation

In this section, the plane benchmark problems of isotropic elastic rectangular
plates are simulated. The geometric size and material properties of the plate are
the same in the simulations and they are listed in Table 1. In addition, all length
units are in millimeters [mm].

Table 1. Geometric and material parameters.

Length l [mm] Width w [mm] Young’s modulus E [GPa] Poisson’s ratio ν
1000 500 200 0.3

The model parameter χ introduced in PDBC takes 3.59, which is given by
an equivalent assumption that elastic solutions for the displacements at the ends
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of a stretching rod are equal to the PD solutions. The detailed derivation refers
to Appendix C.

5.1. Example 1: a rectangular plate with two opposite edges subjected
to compression and the other two edges to the constraint of displacement

As shown in Fig. 1, two opposite edges of the rectangular plate are subjected
to uniform compression q = 180MPa, while other two edges are given the dis-
placement V0 = 0.25mm in the y direction. Clearly, this is a mixed boundary
value problem, corresponding to Eq. (2.17) or Eq. (4.1).

Fig. 1. Schematic diagram of subjected load of Example 1.

For simplicity, the rectangular plate is uniformly discretized into a particle
set with the equal spacing ∆ in the plane, as shown in Fig. 2. In calculation, the
PM and OSB constitutive models are adopted.

Fig. 2. Schematic diagram of the spatial discretization of the rectangular plate in Example 1.

In Fig. 2, the black dots represent the nodes within the plate, while the
red and blue dots represent the nodes at the edges of the plate. As mentioned
above, the blue dots are subjected to the constraint of a given displacement
in the y direction and the red dots to the traction in the x direction. Since
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the displacements of the blue dots in the x direction are still unknown, so the
volume Vxj associated with these dots in Eq. (4.1) and Eq. (4.2) should be taken
as (∆2h) (see the shaded part in Fig. 2). It should be emphasized that embedding
the fictitious volume (∆2h) into the nodes on the displacement boundary is only
a numerical processing means, which should be treated in all examples involving
displacement boundary conditions.

The horizon size is specified as δ = 3.015∆. The adaptive dynamic relaxation
(ADR) method [20] is used to calculate PDBC, and three different grid sizes
∆ = l/50, l/100 and l/200 are used to show the influence of the grid density
on the convergence and computational accuracy of the numerical algorithm, as
illustrated in Figs. 3 to 8.

Fig. 3. Convergence of numerical algorithm at x = -250 mm andy = -140 mm with time
step when ∆ = l/50.

(a) ux at section y = 0 (b) uy at section x = 10 mm

Fig. 4. The displacement at sections y = 0 and x = 10mm when ∆ = l/50.
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Fig. 5. Convergence of numerical algorithm at x = −255mm and y = −125mm with time
step when ∆ = l/100.

(a) ux at section y = 5mm (b) uy at section x = 5mm

Fig. 6. The displacement at sections y = 5mm and x = 5mm when ∆ = l/100.

Fig. 7. Convergence of numerical algorithm at x = −252.5mm and y = −122.5mm with
time step when ∆ = l/200.
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(a) ux at section y = 2.5mm (b) uy at section x = 2.5mm

Fig. 8. The displacement at sections y = 2.5mm and x = 2.5mm when ∆ = l/200.

As can be seen from Figs. 3 to 8, as the grid density increases, the convergence
rate of the numerical algorithm slows down, and the predicted results of PDBC
are in good agreement with the classical solutions. Therefore, the δ-convergence
[40] can be considered to satisfy for PDBC. In order to balance computational
accuracy and efficiency, the grid size is taken as ∆ = l/100 by default in the
subsequent simulation unless otherwise specified.

Figures 9 and 10 show that the numerical results obtained by the implicit
solver implemented in this paper are remarkably in agreement with that by the
ADR method. In the following, all simulations are based on the implicit solver.

From Figs. 11 and 12, it is easy to find that the PDBC predictions are closer
to the analytical solutions than that of PD, regardless of the bond-based or the
ordinary state-based constitutive model. In addition, Figs. 13 and 14 show that
the displacement distribution of PDBC at the boundaries is more precise than
that of PD, which indicates that the boundary effect of PD is more obvious.

(a) ux at section y = 5mm (b) uy at section x = 5mm

Fig. 9. Comparison of implicit with explicit algorithm based on the PM model.
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(a) ux at section y = 5mm (b) uy at section x = 5mm

Fig. 10. Comparison of implicit with explicit algorithm based on the OSB model.

(a) ux at section y = −245mm (b) uy at section x = −495mm

Fig. 11. The displacement at sections y = −245mm and x = −495mm in Example 1.

(a) ux at section y = 5mm (b) uy at section x = 5mm

Fig. 12. The displacement at sections y = 5mm and x = 5mm in Example 1.
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(a) ux of PD (b) uy of PD

(c) ux of PDBC (d) uy of PDBC

Fig. 13. The distribution of displacement based on the PM model in Example 1.

(a) ux of PD (b) uy of PD

(c) ux of PDBC (d) uy of PDBC

Fig. 14. The distribution of displacement based on the OSB model in Example 1.

5.2. Example 2: a cantilever rectangular plate with uniform compression

The cantilever rectangular plate is shown in Fig. 15. Its right side is subjected
to uniform compression q = 180 MPa. Clearly, this is also a mixed boundary value
problem, corresponding to Eq. (2.17) or Eq. (4.1).

Figures 16, 17 and 18 are the displacement contours in the cantilever plate
calculated by FEM, PD and PDBC. They show that the displacements given
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Fig. 15. Schematic diagram of subjected load of Example 2.

by PD and PDBC are quite close in distribution, and the relative error between
them is within 3%, regardless of the bond-based or the ordinary state-based
constitutive model. In x direction, although the relative errors between PDBC,

(a) ux (b) uy

Fig. 16. The distribution of displacement obtained by ABAQUS in Example 2.

(a) ux of PD (b) uy of PD

(c) ux of PDBC (d) uy of PDBC

Fig. 17. The distribution of displacement based on the PM model in Example 2.



Peridynamics compatible with boundary conditions. . . 23

(a) ux of PD (b) uy of PD

(c) ux of PDBC (d) uy of PDBC

Fig. 18. The distribution of displacement based on the OSB model in Example 2.

PD and the FEM prediction are within 2%, the PDBC prediction is closer to the
FEM prediction. The same is true in y direction, but the PDBC prediction is
closer to the FEM prediction when the ordinary state-based constitutive model
is used.

5.3. Example 3: a rectangular plate with the given displacements on all edges

As shown in Fig. 19, the displacement U0 = 0.45mm is applied on the two
opposite edges of the rectangular plate in the x direction and V0 = 0.25mm
on the other two edges in the y direction. Such a case forms a displacement
boundary value problem, corresponding to Eq. (2.18) or Eq. (4.2).

Fig. 19. Schematic diagram of subjected load of Example 3.
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(a) ux at section y = −245mm (b) uy at section x = −495mm

Fig. 20. The displacement at sections y = −245mm and x = −495mm in Example 3.

(a) ux at section y = 5mm (b) uy at section x = 5mm

Fig. 21. The displacement at sections y = 5mm and x = 5mm in Example 3.

(a) ux of PD (b) uy of PD

(c) ux of PDBC (d) uy of PDBC

Fig. 22. The distribution of displacement based on the PM model in Example 3.
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(a) ux of PD (b) uy of PD

(c) ux of PDBC (d) uy of PDBC

Fig. 23. The distribution of displacement based on the OSB model in Example 3.

From Figs. 20 to 23, we can find that although PDBC and PD predictions
both are well matched with analytical solutions, the displacement distribution
of PDBC at the boundaries is more exact than that of PD, regardless of whether
the bond-based or the ordinary state-based constitutive model is used.

5.4. Example 4: a rectangular plate with two opposite edges
subjected to tension

As shown in Fig. 24, the upper and lower edges of the rectangular plate are
subjected to uniform tension q = 200MPa. Clearly, this is a traction boundary
value problem, corresponding to Eq. (2.19) or Eq. (4.3).

Fig. 24. Schematic diagram of subjected load of Example 4.
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(a) ux at section y = −245mm (b) uy at section x = −495mm

Fig. 25. The displacement at sections y = −245mm and x = −495mm in Example 4.

(a) ux at section y = 5mm (b) uy at section x = 5mm

Fig. 26. The displacement at sections y = 5mm and x = 5mm in Example 4.

(a) ux of PD (b) uy of PD

(c) ux of PDBC (d) uy of PDBC

Fig. 27. The distribution of displacement based on the PM model in Example 4.
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(a) ux of PD (b) uy of PD

(c) ux of PDBC (d) uy of PDBC

Fig. 28. The distribution of displacement based on the OSB model in Example 4.

It can be seen from Figs. 25 and 26 that the PDBC predictions are closer to
the analytical solutions, regardless of the bond-based or the ordinary state-based
constitutive model. In addition, Figs. 27 and 28 indicate that the displacement
distribution of PDBC at the boundaries is more exact than that of PD.

5.5. Example 5: a rectangular plate subjected to bending

As shown in Fig. 29, the rectangular plate is subjected to an anti-symmetri-
cally distributed linear loads with a maximal value q = 200Mpa. As well known,
this is a pure bending problem with the complicated traction boundary condition.

Fig. 29. Schematic diagram of subjected load of Example 5.

As can be seen from Figs. 30 to 35, the displacement distribution predicted
by PDBC agrees with that by PD, and both of them agree well with the analyt-
ical solutions on the whole. The relative errors between them are less than 3%,
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(a) ux at section y = −245mm (b) uy at section y = −245mm

Fig. 30. The displacement at section y = −245mm in Example 5.

(a) ux at section x = −495mm (b) uy at section x = −495mm

Fig. 31. The displacement at section x = −495mm in Example 5.

(a) ux at section y = 5mm (b) uy at section y = 5mm

Fig. 32. The displacement at section y = 5mm in Example 5.
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(a) ux at section x = 5mm (b) uy at section x = 5mm

Fig. 33. The displacement at section x = 5mm in Example 5.

(a) ux of PD (b) uy of PD

(c) ux of PDBC (d) uy of PDBC

Fig. 34. The distribution of displacement based on the PM model in Example 5.

regardless of the bond-based or the ordinary state-based constitutive model. In
addition, the prediction results of the ordinary state-based constitutive model
are better than those of the bond-based constitutive model, regardless of PD or
PDBC.

6. Conclusions

The new peridynamic equation of motion PDBC proposed in this paper is
essentially an extension of the Silling peridynamic equation of motion. Through
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(a) ux of PD (b) uy of PD

(c) ux of PDBC (d) uy of PDBC

Fig. 35. The distribution of displacement based on the OSB model in Example 5.

calculating the benchmark examples of the plane stress problems, PDBC is ver-
ified to be efficacious for naturally handling the complex boundary conditions,
and it does not require surface correction. The main conclusions are summarized
as follows.

(1) The model parameter introduced in PDBC is determined by an equivalent
assumption that elastic solutions for the displacements at the ends of a stretching
rod are equal to the PD solutions regardless of the bond-based constitutive model
or the ordinary state-based constitutive model.

(2) On the whole, the computational results for the benchmark problems by
PDBC and PD are closed to each other, but the concept of traction and the
traction boundary condition are preserved in PDBC.

(3) Compared with PD, PDBC does not need surface correction in the nu-
merical calculation. It is more suitable for problems with complex boundary
shapes.

Appendix A

To deal with boundary traction, the existing method transforms it into a body
force, that is

(A.1) b1(x, t) =


∫
∂Ωp

p(x′′′, t) dAx′′′

VB
for x ∈ ΩB,

0 otherwise,
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where ΩB represents the boundary layer with ∂Ωp as the boundary surface, and
VB is the volume of ΩB.

Let ∂Ωp = ∂Ω, and the body force b(x, t) does not exist. Then, Eq. (2.1) can
be rewritten as

(A.2) ρ(x)ü(x, t) =

∫
Hx

{T[x, t]〈ξ〉 −T[x′, t]〈−ξ〉} dVx′ + b1(x, t).

Integrating Eq. (A.2) over Ω leads to

(A.3)
∫
Ω

ρ(x)ü(x, t) dVx

=

∫
Ω

∫
Hx

{T[x, t]〈ξ〉 −T[x′, t]〈−ξ〉} dVx′ dVx +

∫
Ω

b1(x, t) dVx.

The first term at the right side of Eq. (A.3) is equal to zero [2]. Owing to
Eq. (A.1), Eq. (A.3) reduces to

(A.4)
∫
Ω

ρ(x)ü(x, t) dVx =

∫
∂Ω

p(x′′′, t) dAx′′′ ,

which shows that Eq. (A.2) satisfies the balance of total linear momentum.
However, when the balance of angular momentum is considered, we have

(A.5)
∫
Ω

y(x, t)× ρ(x)ü(x, t) dVx

=

∫
Ω

y(x, t)×
∫
Hx

{T[x, t]〈ξ〉 −T[x′, t]〈−ξ〉} dVx′ dVx +

∫
Ω

y(x, t)b1(x, t) dVx.

Owing to Eq. (A.1), the third term in Eq. (A.5) can be rewritten as

(A.6)
∫
Ω

y(x, t)× b1(x, t) dVx

=
1

VB

∫
ΩB

y(x, t)×
∫
∂Ω

p(x′′′, t) dAx′′′ dVx

=
1

VB

∫
ΩB

∫
∂Ω

y(x, t)× p(x′′′, t) dAx′′′ dVx

=
1

VB

∫
∂Ω

∫
ΩB

y(x, t)× p(x′′′, t) dVx dAx′′′

6=
∫
∂Ω

y(x′′′, t)× p(x′′′, t) dAx′′′ =

∫
∂Ω

y(x, t)× p(x, t) dAx.
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From Eq. (A.6), it can be seen that converting the traction force on the boundary
surface into the body force within the boundary layer cannot guarantee that the
angular momentum equilibrium is satisfied.

Appendix B

LetR be the residual. The discrete equations Eq. (4.1), Eq. (4.2) and Eq. (4.3)
can be in unified form represented as

(B.1) R(xi,ui, t) = ef(xi,ui, t) + if(xi,ui, t) = 0,

where ef represents the external forces exerting at all nodes, and if the internal
forces acting at all nodes. Taking Eq. (4.1) as an example, ef and if in Eq. (B.1)
can be written as

(B.2)



ef(xi,ui, t) = χ
∑
∂Ωu

{L(xi,xk)[y(xk, t)− y(xi, t)]}Axk

+
χ

χ− 1

∑
∂Ωp

{G(xi,xk)p(xk, t) + L(xi,xk)y(xi, t)}Axk + b(xi, t),

if(xi,ui, t) =
∑
Hxi

{T[xi, t]〈xj − xi〉 −T[xj , t]〈xi − xj〉}Vxj .

In a perfectly equilibrated configuration, the residual vector R is equal to 0.
As a numerical algorithm, the Newton–Raphson method focuses on finding the
approximation of the displacements u at all nodes so that the configuration
is closest to the equilibrium. Borrowing terminology from the nonlinear finite
element method, we call the partial derivative ∂R/u of residual R with respect
to displacements u as the Jacobian matrix [41], denoted as A, and the partial
derivative ∂if/u of an internal force if with respect to displacements u as tangent
stiffness matrix [41], denoted as K. According to the iterative scheme of the
Newton–Raphson method, we have

∂R

∂u
|un ·∆u =

∂R(xni ,u
n
i , t)

∂un
·∆u = A|un ·∆u(B.3)

= −R|un = −R(xni ,u
n
i , t),

where ∆u = un+1 − un represents the increment of displacements u of all
nodes at iterative step n+1 and iterative step n. The increment of displacements
can be obtained by solving the system of linear equations in Eq. (B.3), and then
nodal displacements of iterative step n + 1 can be obtained according to nodal
displacements of iterative step n. Iteration can be stopped until a scalar value of
residual R, for example, l2-norm of R has dropped below a specified threshold
value. The specific steps of the Newton–Raphson method are as follows.
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step 1: Initialize, n = 0, utrial = 0.
step 2: Apply the Newton–Raphson method to minimize the residual.

step 2-1: Evaluate the external force vector ef, for utrial, if it needs to be
updated.

step 2-2: Evaluate the residual vector R, for utrial.
step 2-3: If the convergence criterion is met, that is ‖R‖ ≤ 10−6, go to step 3;

otherwise go to step 2-4.
step 2-4: Construct the Jacobian matrix A of utrial.
step 2-5: Exert constraints, if necessary.
step 2-6: Solve the system of linear equations A ·∆u = −R, obtained ∆u.
step 2-7: Set utrial = utrial + ∆u.
step 2-8: Set n = n+1 and return to step 2-1.

step 3: Set u = utrial.

It can be seen from Eq. (4.1) and Eq. (4.2) that the surface integral term in
mixed boundary value problems and displacement boundary value problems is
the function of nodal displacements. Therefore, the step 2-1 needs to be done
for these two kinds of problems, while for traction boundary value problems, it
is not required and we have A = K. The constraint handling in step 2-5 needs
to be done for all problems involving the displacement boundary condition.

It can be seen from Eq. (B.3) that Jacobian matrix A consisting of the
tangent stiffness matrix K and ∂ef/u is necessary when the Newton–Raphson
method is used to solve nonlinear problems. Eq. (4.1) and Eq. (4.2) show that
∂ef/u can be easily obtained if the body force is ignored. As result, how to
construct K becomes the key.

For nonlinear constitutive models, the tangent stiffness matrix is a function
of nodal displacements. Therefore, once the nodal displacements are updated,
the tangent stiffness matrix must be re-evaluated. The tangent stiffness matrix
is defined as

(B.4) Ksr =
∂ifs(xi,ui, t)

∂ur
,

where ifs is a component of the internal force vector if, and ur is a component
of the displacements vector u.

The construction of the tangent stiffness matrix includes analytical and com-
putational approaches. Analytical approaches can refer to [18, 23, 42]. Compu-
tational approaches are more universal, and commonly used one is the finite-
difference method [38, 39], in which a central-difference scheme used in place of
Eq. (B.4) can be expressed as follows

(B.5) Ksr ≈
ifu+εr
s (xi,ui, t)− ifu−εrs (xi,ui, t)

2ε
,
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where εr is a perturbation displacement vector containing a single nonzero en-
try ε corresponding to the rth displacement degree of freedom in the discretiza-
tion, while ifu+εr

s is ifs with positive perturbation displacements εr. For an ac-
curate approximation, the magnitude of ε should be chosen to be small relative
to the spacing between nodes after discretization, but not so small that the lim-
itations of machine precision become a significant factor. The disturbance size ε
is taken as 1.0× 10−6 times the nodal spacing [38, 39] in this paper. The pseu-
docode of constructing the tangent stiffness matrix with the central-difference
scheme is shown as follows.

1: Initialize, K = O.
2: for i do (traverse every discrete node).
3: for r do (traverse the displacement degree of freedom of node i).
4: A positive perturbation displacement is imposed at degree of freedom r of

node i.
5: Evaluate internal force vector f_pos of all nodes under positive perturba-

tion displacements.
6: A negative perturbation displacement is imposed at degree of freedom r of

node i.
7: Evaluate internal force vector f_neg of all nodes under negative perturba-

tion displacements.
8: for j do (traverse every discrete node).
9: for s do (traverse the displacement degree of freedom of node j).
10: K(sth, rth) = K(sth, rth) + [f_pos(sth, 1)− f_neg(sth, 1)]/(2ε).
11: end for s.
12: end for j.
13: end for r.
14: end for i.

It should be emphasized that for the state-based constitutive model, the tan-
gent stiffness matrix K and the Jacobian matrix A are asymmetric due to the
bond force vectors having unequal magnitudes. If the coefficient matrix is asym-
metric, some specialized methods such as generalized minimum residual method
(GMES) need to be used to solve the system of linear equations in Eq. (B.3).

Appendix C

As a benchmark example, the elastic displacement solution of a stretching rod
is repeatedly verified by experimental results. Therefore, the PD solution should
be at least the same as the elastic solution in terms of the total elongation of
the stretched rod, i.e., the displacement at the end of the rod.

Consider a rod with the length of l and cross-sectional area of h1 subjected
to the tensile force F at two ends. Let the PM constitutive model characterized
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by Eq. (3.7) be adopted and the coordinate origin be placed in the center of the
rod. Substituting the elastic solution u(x) = (F/h1E)x into Eq. (2.19) and then
taking x = l/2, we have:

(C.1)
χ

χ− 1
G

(
l

2
,
l

2

)
F + ch1

F

h1E

l/2∫
l/2−δ

x′ − l
2∣∣x′ − l
2

∣∣dx′ = 0

⇒ χ

χ− 1

F

δ ln 2h1
+

2E

h1δ2
h1

F

h1E
(−δ) = 0

⇒ χ

χ− 1
= 2 ln 2.

In terms of (C.1), we obtain χ = 2 ln 2/(2 ln 2 − 1) = 3.59, which is used in all
calculations in this paper.
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