Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 125, nr 1 | 22--31
Tytuł artykułu

Precast lightweight concrete wall panels from plastic waste and household ash as partially sand and cement replacement

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The present study aims to investigate the properties of precast lightweight concrete wall panels prepared with the addition of plastic powder and household ash as a partial substitution for sand and cement. Design/methodology/approach: Eight formulations of lightweight concrete wall panels were prepared using a mix. The proportion of sand-to-cement ratio of 3:1 by weight and water-to-cement ratio of 1.85. Subsequently, sand and cement were gradually replaced with plastic powder and household ash. Plastic has water-repellent properties, while household ash is a natural pozzolan with cementitious properties in the presence of water and calcium hydroxide. Therefore, adding both materials in certain proportions should improve the quality of concrete wall panels. The mixture was cast in a fibreglass mould with length, width, and thickness dimensions of 30 x 30 x 3 cm. The evaluations of precast lightweight concrete wall panels include density tests, water absorption, compressive strength, water absorption-desorption capacity, and surface morphology. Findings: Replacing 20% of sand and 10% of cement with plastic powder and household ash produces lightweight concrete wall panels with a density, water absorption, and compressive strength of 1512.2 kg/m3, 7.95%, and 3.78 MPa, respectively. These precast concrete wall panels are acceptable for lightweight concrete wall panel requirements according to ASTM C129-06. Research limitations/implications: In this research, lightweight concrete wall panels were prepared by adding PET plastic powder and household ash to replace the sand and cement partially. In further research, it is necessary to assess the precast lightweight wall panels prepared from other plastic types and natural pozzolans. Practical implications: Using plastic waste reinforced with household ash as a partial substitute for sand and cement can create eco-friendly precast lightweight concrete wall panels. This is an effort to reduce sand and cement usage in concrete wall panel production and as an innovative way to reduce plastic waste in the environment. Originality/value: It has been experimentally proven that utilising plastic powder of up to 20% and household ash of up to 10% by weight for partial replacement sand and cement in preparation of precast lightweight concrete wall panels fully meets standard materials for manufacturing according to ASTM C129-06 standard for non-loading-bearing lightweight concrete. The addition of plastic makes the colour of the concrete wall panels' surface more attractive.
Wydawca

Rocznik
Strony
22--31
Opis fizyczny
Bibliogr. 36 poz.
Twórcy
  • Chemistry Department, Faculty of Mathematics and Natural Sciences, Universitas Pendidikan Ganesha, Singaraja 81116 Bali, Indonesia , ketut.sastrawidana@undiksha.ac.id
  • Chemistry Department, Faculty of Mathematics and Natural Sciences, Universitas Pendidikan Ganesha, Singaraja 81116 Bali, Indonesia
Bibliografia
  • [1] R. Verma, K.S. Vinoda, M. Papireddy, A.N.S. Gowda, Toxic pollutants from plastic waste: A review, Procedia Environmental Sciences 35(2016) 701-708. DOI: https://doi.org/10.1016/j.proenv.2016.07.069
  • [2] S.P. Dalai, S. Ampolu, U. Hanumanthu, A. Hariharan, Impacts of effluents from plastic waste on environment and precautions, Chemical Science Review and Letters 11/43 (2022) 356-360. DOI: https://doi.org/10.37273/chesci.CS205306488
  • [3] D. Wulandari, S.H. Utomo, B.S. Narmaditya, Waste bank: Waste management model in improving local economy, International Journal of Energy Economics and Policy 7/3 (2017) 36-41.
  • [4] S. Agyeman, N.K. Obeng-Ahenkora, S. Assiamah, G. Twumasi, Exploiting recycled plastic waste as alternative binder for paving blocks production, Case Studies in Construction Materials 11 (2019) e00246. DOI: https7/doiLOTg/W.1016jcscmJL2019Je00246
  • [5] D.K. Sastrawidana, I.N. Sukarta, L.P.A. Saraswati, S. Maryam, G.A. Putra, Plastic waste reinforced with inorganic pigment from red stone in manufacturing paving block for pedestrian application, Journal of Achievements in Materials and Manufacturing Engineering 110/2 (2022) 49-58. DOI: https://doi.org/10.5604/01.3001.0015.7042
  • [6] S. Kofteci, Effect of HDPE based wastes on the performance of modified asphalt mixtures, Procedia Engineering 161 (2016) 1268-1274. DOI: https://doi.org/10.1016/j.proeng.2016.08.567
  • [7] D.K. Dadzie, A.K. Kaliluthin, D.R. Kumar, Exploration of waste plastic bottles use in construction, Civil Engineering Journal 6/11(2020) 2262-2272. DOI: https://doi.org/10.28991/cej-2020-03091616
  • [8] L.M.F. Purwanto, A.M.S. Darmawan, Design building materials of plastic waste panel, International Journal of Recent Scientific Research 8/4 (2017) 16430-16433. DOI: https://doi.org/10.24327/ijrsr.2017.0804.0147
  • [9] E. Julian, P. Blanche, L. Gosselin, Case study: fully fabricated wood wall connection to improve building envelope and on-site efficiency, Buildings 12/12 (2022) 2185. DOI: https://doi.org/10.3390/buildings12122185
  • [10] H. Wu, A. Chen, S. Laflamme, Seismic behaviour of glass fiber-reinforced polymer wall panels, Composite Structures 203 (2018) 300-309. DOI: https7/dojJ.oig/101016/jAompstiuct2018J07A34
  • [11] P.M. Amaral, R.S. Camposinhos, J.C. Lello, Natural stone testing specification for a new faęade system, Key Engineering Materials 548 (2013) 295-303. DOI: https://doi.org/10.4028/www.scientific.net/KEM.548. 295
  • [12] A.K.L. Bezera, L.A. Silva, L.B.R. Araujo, A.E.B. Cabral, Production and characterization of artificial stone for coating limestone waste laminated in polymeric matric, Ambiente Constru^do 22/4 (2022) 23-33. DOI: https://doi.org/10.1590/s1678-86212022000400625
  • [13] C.B. da Silva, P.R.P. de Paiva, Artificial stone production using iron ore tailing, Ceramica 66/378 (2020) 164-171. DOI: https://doi.org/10.1590/0366-69132020663782854
  • [14] K. Barani, H. Esmaili, Production of artificial stone slabs using waste granite and marble stone sludge samples, Journal of Mining and Environment 7/1 (2016) 135-141. DOI: https://doi.org/10.22044/jme.2016.491
  • [15] B. Kanagara, T. Kiran, J. Gunasekaran, A. Nammalva, P. Arulra, B.G.A. Gurupatham, K. Roy, Performance of sustainable insulated wall panels with geopolymer concrete, Materials 15/24 (2022) 8801. DOI: https://doi.org/10.3390/ma15248801
  • [16] S. Shahidan, A.S. Leman, M.S. Senin, N.I.R.R. Hannan, Suitability of coconut shell concrete for precast cool wall panel: A Review, MATEC Web of Conferences 87 (2017) 01005. DOI: https://doi.org/10.1051/matecconf/20178701005
  • [17] J.M. Raki-in, K.L.M. Villagracia, R.L. Menchavez, Fabrication of a Wall-Panel Board Using Rice Husk and Red Clay-Based Geopolymer, Mindanao Journal of Science and Technology 19/1 (2021) 250-268. DOI: https://doi.org/10.61310/mndjsteect.1057.21
  • [18] S. Hamoush, T.A. Lebdeh, M. Picornell, S. Amer, Development of sustainable engineered stone cladding for toughness, durability and energy conservation, Construction and Building Materials 25/10 (2011) 4006-4016. DOI: https://doi.org/10.1016/j.conbuildmat.2011.04.035
  • [19] M.M. Hossain, M.R. Karim, M. Hasan, M.K. Hossain, M.F. Zain, Durability of mortar and concrete made up of pozzolans as a partial replacement of cement: A review, Construction and Building Materials 116 (2016) 128-140. DOI: https://doi.org/10.1016/j.conbuildmat.2016.04.147
  • [20] G. Quercia, P. Spiesz, G. Husken, H.J.H. Brouwers, SCC modification by use of amorphous nano-silica, Cement and Concrete Composites 45 (2014) 69-81. DOI: https://doi.org/10.1016/j.cemconcomp.2013.09.001
  • [21] R.C. Arum, C. Arum, S.A. Alabi, The highs and lows of incorporating pozzolans into concrete and mortar: a review on strength and durability, Nigerian Journal of Technology 41/2 (2022) 197-211. DOI: https7/doi.org/10243.14/njt.v41i2i1
  • [22] V.S. Kashyap, G. Sancheti, J.S. Yadav, U. Agrawal, Smart sustainable concrete: enhancing the strength and durability with nano silica, Smart Construction and Sustainable Cities 1 (2023) 20. DOI: https://doi.org/ 10.1007/s44268-023-00023-1
  • [23] ASTM C129-06, Standard specification for nonloadbearing concrete masonry units, ASTM International, West Conshohocken, PA, USA, 2011. DOI: https://doi.org/10.1520/C0129-06
  • [24] ASTM D6489-99, Standard test method for determining the water absorption of hardened concrete treated with a water reppellent coating, ASTM International, West Conshohocken, PA, USA, 2020. DOI: https://doi.org/10.1520/D6489-99R20
  • 25] Q. Zhang, Z. Kang, Y. Ling, H. Chen, K. Li, Influence of temperature on the moisture transport in concrete, Crystals 11/1 (2021) 8. DOI: https://doi.org/10.3390/cryst11010008
  • [26] H. Li, K. Song, D. Zhou, Q. Wu, Effect of durability treatment on moisture sorption properties of woodplastic composites, BioResources 9/4 (2014) 63976407. DOI: https://doi.org/10.15376/biores. 9.4.63976407
  • [27] Y.-C. Chiu, P.-H. Chen, W.-C. Liao, Empirical study on weather resistance of white artificial stones in subtropical island climate, Sustainability 13/3 (2021) 1509. DOI: https://doi.org/10.3390/su13031509
  • [28] C.M. Tibbetts, K.A. Riding, C.C. Ferraro, A critical review of the testing and benefits of permeability reducing admixtures for use in concrete, Cement 6 (2021) 100016. DOI: https://doi.org/10.1016Zj.cement.2021.100016
  • [29] V. Baradiya, N. Sanghvi, R.S. Yadav, Mechanical behavior of composite wall panel using cellular light weight concrete, International Research Journal of Engineering and Technology 5/7 (2018) 308-315.
  • [30] J. Pinto, B. Vieira, H. Pereira, C. Jacinto, P. Velila, A. Paiva, S. Pereira, V.M.C.F. Cunha, H. Varum, Corn cob lightweight concrete for non-structural applications, Construction and Building Materials 34 (2012) 346-351. DOI: https://doLorg/10i106iLSonbuildmat202.02042.
  • [31] M.Y.N. Izzati, A.S. Hani, S. Shahiron, A.S. Shah, O.M. Hairi, J. Zalipah, A.H.N. Azlina, W.A.M.N. Akasyah, K.N. Amirah, Strength and water absorption properties of lightweight concrete brick, IOP Conference Series: Materials Science and Engineering 513 (2019) 012005. DOI: https://doi.org/10.1088/1757-899X/513/1/012005
  • [32] Y. Babatunde, J. Mwero, R. Mutuku, Y. Jimoh, D. Oguntayo, Influence of material composition on the morphology and engineering properties of waste plastic binder composite for construction purposes, Heliyon 8/10 (2022) e11207. DOI: https://doi.Org/10.1016/j.heliyon.2022.e11207
  • [33] V.S. Kashyap, G. Shanceti, J.S. Yadav, Durability and microstructural behavior of Nano silica-marble dust concrete, Cleaner Materials 7 (2023) 100165. DOI: https://doi.org/10.1016/j.clema.2022.100165
  • [34] SNI 03-3122-1992, Fiber lightweight concrete panels, Indonesian National Standard, 1992.
  • [35] F.M. Yaseen, Production of economical precast concrete panels reinforced by waste plastic fibers, American Journal of Civil Engineering and Architecture 3/3 (2015) 80-85. DOI: https://doi.org/10.12691/ajcea-3-3-4
  • [36] S. Hussain, J.S. Yadav, Mechanical and durability performances of alkali-resistant glass fiber-reinforced concrete, Jordan Journal of Civil Engineering 17/2 (2023) 231-246. DOI: https://doi.org/10.14525/JJCE.v17i2.06
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-25eb15e8-93c9-4676-986b-dea9d9afc71d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.