Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | Vol. 40, no. 1 | 148--161
Tytuł artykułu

An improved algorithm for efficient ocular artifact suppression from frontal EEG electrodes using VMD

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Electroencephalogram (EEG) recordings from the frontal lobe of the human brain help in analyzing several important brain functions like motor functions, problem-solving skills, etc. or brain disorders. These recordings are often contaminated by high amplitude and long duration ocular artifacts (OAs) like eye blinks, flutters and lateral eye movements (LEMs), hence corrupting a considerable segment of EEG. In this study, an enhanced version of signal decomposition scheme i.e. Variational Mode Decomposition (VMD) based algorithm is used for suppression of OAs. The signal decomposition is preceded by identification of ocular artifact corrupted segment using Multiscale modified sample entropy (mMSE). The band limited intrinsic mode functions (BLIMFs) are obtained using predefined K (number of required BLIMFs) and α (balancing parameter). These parameters help to detrend the EEG segment in yielding the low frequency and high amplitude BLIMFs related to OA efficiently. Upon identifying OA components from the BLIMFs and estimating OA, it is regressed with the contaminated EEG to obtain the clean EEG. The proposed VMD based algorithm provides an improved performance in comparison with the existing single channel algorithms based on Empirical mode decomposition (EMD) and Ensembled EMD (EEMD) and multi-channel algorithms like Independent component analysis (ICA) and wavelet enhanced ICA for artifact suppression and is also able to overcome their limitations. The significance of the algorithm are: (1) no additional reference EOG channel requirement, (2) OA artifact based thresholds for identification and estimation from the mode functions obtained using VMD, and (3) also address the flutter artifacts.
Wydawca

Rocznik
Strony
148--161
Opis fizyczny
Bibliogr. 50 poz., rys., tab., wykr.
Twórcy
  • Dept. of Electronics & Telecommunication Engineering, International Institute of Information Technology, Bhubaneswar, India
  • Dept.of Electronics & Telecommunication Engineering, International Institute of Information Technology, Bhubaneswar, India, pradyut@iiit-bh.ac.in
Bibliografia
  • [1] Stuss DT, Benson DF. Neuropsychological studies of the frontal lobes. Psychol Bull 1984;95:3.
  • [2] Klass DW. The continuing challenges of artifacts in the EEG. Am J EEG Technol 1995;35:239–69.
  • [3] Hagemann D, Naumann E. The effects of ocular artifacts on (lateralized) broadband power in the EEG. Clin Neurophysiol 2001;112:215–31.
  • [4] Stern JM. Atlas of EEG patterns. Lippincott Williams & Wilkins; 2005.
  • [5] Croft RJ, Barry RJ. Removal of ocular artifact from the EEG: a review. Neurophysiol Clin/Clin Neurophysiol 2000;30:5–19.
  • [6] Urigüen JA, Garcia-Zapirain B. EEG artifact removal state-of-the-art and guidelines. J Neural Eng 2015;12:031001.
  • [7] Mognon A, Jovicich J, Bruzzone L, Buiatti M. ADJUST: an automatic EEG artifact detector based on the joint use of spatial and temporal features. Psychophysiology 2011;48:229–40.
  • [8] Britton JW, Frey LC, Hopp J, Korb P, Koubeissi M, Lievens W, et al. Electroencephalography (EEG): an introductory text and atlas of normal and abnormal findings in adults, children, and infants. Chicago: American Epilepsy Society; 2016.
  • [9] Gratton G, Coles MG, Donchin E. A new method for off-line removal of ocular artifact. Electroencephalogr Clin Neurophysiol 1983;55:468–84.
  • [10] Woestenburg J, Verbaten M, Slangen J. The removal of the eye-movement artifact from the EEG by regression analysis in the frequency domain. Biol Psychol 1983;16:127–47.
  • [11] Mannan MMN, Kamran MA, Kang S, Jeong MY. Effect of EOG signal filtering on the removal of ocular artifacts and EEG-based brain-computer interface: a comprehensive study. Complexity 2018;2018.
  • [12] Jung T-P, Makeig S, Humphries C, Lee T-W, Mckeown MJ, Iragui V, et al. Removing electroencephalographic artifacts by blind source separation. Psychophysiology 2000;37:163–78.
  • [13] Bell AJ, Sejnowski TJ. An information-maximization approach to blind separation and blind deconvolution. Neural Comput 1995;7:1129–59.
  • [14] Casarotto S, Bianchi AM, Cerutti S, Chiarenza GA. Principal component analysis for reduction of ocular artefacts in event related potentials of normal and dyslexic children. Clin Neurophysiol 2004;115:609–19.
  • [15] Castellanos NP, Makarov VA. Recovering EEG brain signals: artifact suppression with wavelet enhanced independent component analysis. J Neurosci Methods 2006;158:300–12.
  • [16] Wang Z, Xu P, Liu T, Tian Y, Lei X, Yao D. Robust removal of ocular artifacts by combining independent component analysis and system identification. Biomed Signal Process Control 2014;10:250–9.
  • [17] Mannan MMN, Kim S, Jeong MY, Kamran MA. Hybrid EEG Eye tracker: automatic identification and removal of eye movement and blink artifacts from electroencephalographic signal. Sensors 2016;16:241.
  • [18] Yang B-h, He L-f, Lin L, Wang Q. Fast removal of ocular artifacts from electroencephalogram signals using spatial constraint independent component analysis based recursive least squares in brain-computer interface. Front Inf Technol Electron Eng 2015;16:486–96.
  • [19] Gao JF, Yang Y, Lin P, Wang P, Zheng CX. Automatic removal of eye movement and blink artifacts from EEG signals. Brain Topogr 2010;23:105–14.
  • [20] Joyce CA, Gorodnitsky IF, Kutas M. Automatic removal of eye movement and blink artifacts from EEG data using blind component separation. Psychophysiology 2004;41:313–25.
  • [21] Bono V, Das S, Jamal W, Maharatna K. Hybrid wavelet and EMD/ICA approach for artifact suppression in pervasive EEG. J Neurosci Methods 2016;267:89–107.
  • [22] Mingai L, Shuoda G, Guoyu Z, Yanjun S, Jinfu Y. Removing ocular artifacts from mixed EEG signals with FastKICA and DWT. J Intell Fuzzy Syst 2015;28:2851–61.
  • [23] Zhao Q, Hu B, Shi Y, Li Y, Moore P, Sun M, et al. Automatic identification and removal of ocular artifacts in EEG improved adaptive predictor filtering for portable applications. IEEE Trans Nanobiosci 2014;13:109–17.
  • [24] Yang B, Duan K, Zhang T. Removal of EOG artifacts from EEG using a cascade of sparse autoencoder and recursive least squares adaptive filter. Neurocomputing 2016;214:1053–60.
  • [25] Peng H, Hu B, Shi Q, Ratcliffe M, Zhao Q, Qi Y, et al. Removal of ocular artifacts in EEG An improved approach combining DWT and ANC for portable applications. IEEE J Biomed Health Inform 2013;17:600–7.
  • [26] Hu J, Wang C-S, Wu M, Du Y-X, He Y, She J. Removal of EOG and EMG artifacts from EEG using combination of functional link neural network and adaptive neural fuzzy inference system. Neurocomputing 2015;151:278–87.
  • [27] Jafarifarmand A, Badamchizadeh M-A, Khanmohammadi S, Nazari MA, Tazehkand BM. Real time ocular artifacts removal of EEG data using a hybrid ICA-ANC approach. Biomed Signal Process Control 2017;31:199–210.
  • [28] Zhang S, McIntosh J, Shadli SM, Neo PS, Huang Z, McNaughton N. Removing eye blink artefacts from EEG-A single-channel physiology_based method. J Neurosci Methods 2017;291:213–20.
  • [29] Singh B, Wagatsuma H. A removal of eye movement and blink artifacts from EEG data using morphological component analysis. Comput Math Methods Med 2017;2017.
  • [30] Somers B, Francart T, Bertrand A. A generic EEG artifact removal algorithm based on the multi-channel wiener filter. J Neural Eng 2018;15:036007.
  • [31] Tamburro G, Fiedler P, Stone D, Haueisen J, Comani S. A new ICA-based fingerprint method for the automatic removal of physiological artifacts from EEG recordings. PeerJ 2018;6:e4380.
  • [32] Shahbakhti M, Khalili V, Kamaee G. Removal of blink from EEG by empirical mode decomposition (EMD). Biomedical Engineering International Conference (BMEiCON). IEEE; 2012. p. 1–5.
  • [33] Zeng H, Song A, Yan R, Qin H. EOG artifact correction from EEG recording using stationary subspace analysis and empirical mode decomposition. Sensors 2013;13:14839–5.
  • [34] Mert A, Akkurt N, Akan A. EOG denoising using empirical mode decomposition and detrended fluctuation analysis. Signal Processing and Communications Applications Conference (SIU); 2014. pp. 544–7.
  • [35] Patel R, Janawadkar MP, Sengottuvel S, Gireesan K, Radhakrishnan TS. Suppression of eye-blink associated artifact using single channel EEG data by combining cross-correlation with empirical mode decomposition. IEEE Sens J 2016;16:6947–54.
  • [36] Soomro MH, Badruddin N, Yusoff MZ, Jatoi MA. Automatic eye-blink artifact removal method based on EMD-CCA. 2013 ICME International Conference on Complex Medical Engineering (CME); 2013. pp. 186–90.
  • [37] Sweeney KT, McLoone SF, Ward TE. The use of ensemble empirical mode decomposition with canonical correlation analysis as a novel artifact removal technique. IEEE Trans Biomed Eng 2013;60:97–105.
  • [38] Chen X, Xu X, Liu A, McKeown MJ, Wang ZJ. The use of multivariate EMD and CCA for denoising muscle artifacts from few-channel EEG recordings. IEEE Trans Instrum Meas 2018;67:359–70.
  • [39] Chen X, Chen Q, Zhang Y, Wang ZJ. A novel EEMD-CCA approach to removing muscle artifacts for pervasive EEG. IEEE Sens J 2018.
  • [40] Patel R, Gireesan K, Sengottuvel S, Janawadkar M, Radhakrishnan T. Common methodology for Cardiac and Ocular artifact suppression from EEG recordings by combining ensemble empirical mode decomposition with regression approach. J Med Biol Eng 2017;37:201–8.
  • [41] Dragomiretskiy K, Zosso D. Variational mode decomposition. IEEE Trans Signal Process 2014;62:531–44.
  • [42] Wang Y, Markert R. Filter bank property of variational mode decomposition and its applications. Signal Process 2016;120:509–21.
  • [43] Hestenes MR. Multiplier and gradient methods. J Optim Theory Appl 1969;4:303–20.
  • [44] Terzano MG, Parrino L, Smerieri A, Chervin R, Chokroverty S, Guilleminault C, et al. Atlas, rules, and recording techniques for the scoring of cyclic alternating pattern (cap) in human sleep. Sleep Med 2002;3:187–99.
  • [45] Kemp B, Zwinderman AH, Tuk B, Kamphuisen HA, Oberye JJ. Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the EEG. IEEE Trans Biomed Eng 2000;47:1185–94.
  • [46] Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PC, Mark RG, et al. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 2000;101(June): e215–20. http://dx.doi.org/10.1161/01.CIR.101.23.e215. Circulation Electronic Pages: http://circ.ahajournals.org/content/101/23/e215.full PMID:1085218.
  • [47] Wu S-D, Wu C-W, Lee K-Y, Lin S-G. Modified multiscale entropy for short-term time series analysis. Phys A: Stat Mech Appl 2013;392:5865–73.
  • [48] Bosl W, Tierney A, Tager-Flusberg H, Nelson C. EEG complexity as a biomarker for autism spectrum disorder risk. BMC Med 2011;9:18.
  • [49] Mahajan R, Morshed BI. Unsupervised eye blink artifact denoising of EEG data with modified multiscale sample entropy, kurtosis, and wavelet-ICA. IEEE J Biomed Health Inform 2015;19:158–65.
  • [50] Xie H-B, He W-X, Liu H. Measuring time series regularity using nonlinear similarity-based sample entropy. Phys Lett A 2008;372:7140–6.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-25c6273b-42ad-4cf9-ae05-629b64c1e297
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.