Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2024 | Vol. 25, No. 4 | art. no. 2024411
Tytuł artykułu

Modular unit for monitoring of elements of asynchronous machine for improving reliability during operations

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To ensure the reliable operation of asynchronous machine, the most effective is to use modern monitoring systems for current monitoring of the state of the main engine elements. This work presents research and developpment of a structural diagram of a modular unit for monitoring the appearance and development of the most frequent and difficult to diagnose types of defect to the main structural elements of the engine. The developed modular unit allows simultaneous monitoring of the presence of inter-turn short-circuits of the stator winding and the integrity of the structure of the short-circuited rotor winding. In the work of the monitoring unit Park's vector approach is used. When conducting research and developing algorithms for the operation of the modular unit, the possibility of accurately determining the degree of damage to the specified defects in the event of a violation of the quality of the engine power supply system was taken into account, which is very important for real-life conditions of use. The obtained results are ready for practical use in the development of new or improvement of existing monitoring systems for monitoring the condition of asynchronous machine under load with a possible poor-quality power supply system.
Wydawca

Czasopismo
Rocznik
Strony
art. no. 2024411
Opis fizyczny
Bibliogr. 51 poz., rys., tab.
Twórcy
  • Kyiv Institute of Railway Transport of State University of Infrastructure and Technologies, Kyiv, Ukraine, oleg.gbr@ukr.net
  • University of Warmia and Mazury in Olsztyn, Faculty of Technical Sciences, Olsztyn, Poland
  • National University of Urban Economy in Kharkiv, Ukraine
  • Volodymyr Dahl East Ukrainian National University, Kyiv, Ukraine
  • Danube Institute of Water Transport of State University of Infrastructure and Technologies, Izmail, Ukraine
Bibliografia
  • 1. Choudhary A, Goyal D, Shimi SL et al. Condition monitoring and fault diagnosis of induction motors: A Review. Arch Computat Methods Engineering. 2019;26:1221-1238. https://doi.org/10.1007/s11831-018-9286-z.
  • 2. Gorobchenko O, Fomin O, Gritsuk I, Saravas V, Grytsuk Y, Bulgakov M, Volodarets M, Zinchenko D. Intelligent locomotive decision support system structure development and operation quality assessment. 2018 IEEE 3rd International Conference on Intelligent Energy and Power Systems, IEPS 2018 - Proceedings, 2018”8559487: 239-243. https://doi.org/10.1109/IEPS.2018.8559487.
  • 3. Riabov I, Goolak S, Kondratieva L, Overianova L. Increasing the energy efficiency of the multi-motor traction electric drive of an electric locomotive for railway quarry transport. Engineering Science and Technology. 2023;42: 101416. https://doi.org/10.1016/j.jestch.2023.101416.
  • 4. Omelyanenko VI, Riabov IS, Overianova LV, Omelianenko HV. Traction electric drive based on fuel cell batteries and on-board inertial energy storage for multi unit train. Electrical Engineering and Electromechanics. 2021;4:64-72. https://doi.org/10.20998/2074-272X.2021.4.08.
  • 5. Goolak S, Kyrychenko M. Thermal model of the output traction converter of an electric locomotive with induction motors. Problemele Energeticii Regionale. 2022;3(55):1-16. http://doi.org/10.52254/1857-0070.2022.3-55.01.
  • 6. Sagin S, Kuropyatnyk O, Sagin A, Tkachenko I, Fomin O, Píštěk V, Kučera P. Ensuring the environmental friendliness of drillships during their operation in special ecological regions of Northern Europe. Journal of Marine Science and Engineering. 2022;10(9):1331. https://doi.org/10.3390/jmse10091331.
  • 7. Khechekhouche A, Cherif H, Menacer A, Chehaidia SE, Panchal H. Experimental diagnosis of inter-turns stator fault and unbalanced voltage supply in induction motor using MCSA and DWER. Periodicals of Engineering and Natural Sciences 2020; 8(3): 1202-1216.
  • 8. Gundewar SK, Kane PV. Condition monitoring and fault diagnosis of induction motor. Journal of Vibration Engineering & Technologies. 2021; 9: 643-674. https://doi.org/10.1007/s42417-020- 00253-y.
  • 9. Almounajjed A, Sahoo AK, Kumar MK, Assaf T. Fault diagnosis and investigation techniques for induction motor. International Journal of Ambient Energy. 2022;43(1):6341-6361. https://doi.org/10.1080/01430750.2021.2016483.
  • 10. Souza de Araújo A, Pinheiro Rocha O, Bandeira Santos AA. Computational model for electrical motors condition analysis and monitoring. VI Simpósio Internacional de Inovação e Tecnologia, Blucher Engineering Proceedings. 2020; 7(2): 543-550. https://doi.org/10.34178/jbth.v5i2.206.
  • 11. Benbouzid MEH. Signal processing for fault detection and diagnosis in electric machines and systems. IET, London 2020. https://doi.org/10.1049/PBPO153E_itr.
  • 12. Arhun S, Migal V, Hnatov A, Ponikarovska S, Hnatova A, Novichonok S. Determining the quality of electric motors by vibro-diagnostic characteristics. EAI Endorsed Transactions on Energy Web. 2020; 20(29):e6. https://doi.org/10.4108/eai.13-7-2018.164101.
  • 13. Benamira N, Dekhane A, Kerfali S, Bouras A, Reffas O. Experimental investigation of the combined fault: Mechanical and electrical unbalances in induction motors based on stator currents monitoring. Instrumentation Mesure Métrologie. 2022;21(6):207-215. https://doi.org/10.18280/i2m.210601.
  • 14. Al Shorman O, Alkahatni F, Masadeh M et al. Sounds and acoustic emission-based early fault diagnosis of induction motor: A review study. Advances in Mechanical Engineering. 2021;13(2), https://doi.org/10.1177/1687814021996915.
  • 15. Gundewar SK, Kane PV. Condition monitoring and fault diagnosis of induction motor. J. Vib. Eng. Technol. 2021; 9:643-674. https://doi.org/10.1007/s42417-020-00253-y.
  • 16. Gubarevych O, Goolak S, Golubieva S. Systematization and selection of diagnosing methods for the stator windings insulation of induction motors. Rev. Roum. Sci. Techn.– Électrotechn. et Énerg. Bucarest 2022;67(4):445-450.
  • 17. Sheikh MA, Bakhsh ST, Irfan M et al. A review to diagnose faults related to three-phase industrial induction motors. J Fail. Anal. and Preven 2022;22: 1546-1557. https://doi.org/10.1007/s11668-022-01445-2.
  • 18. Rauf A, Zhao P, Usman M, Butt A. Health monitoring of induction motor using electrical signature analysis. Journal of Dong Hua University (English Edition). 2022;39(177):265-271. https://doi.org/10.19884/j.1672-5220.202104001.
  • 19. Goolak S, Liubarskyi B, Riabov I, Chepurna N, Pohosov O. Simulation of a direct torque control system in the presence of winding asymmetry in induction motor. Engineering Research Express. 2023;5:025070-025086. http://doi.org/10.1088/2631-8695/acde46.
  • 20. Ray S, Ganguly B, Dey D. Identification and classification of stator inter-turn faults in induction motor using wavelet kernel based convolutional neural network. Electric Power Components and Systems. 2020; 48(12-13):1421-1432. https://doi.org/10.1080/15325008.2020.1854384.
  • 21. Wu K, Li Z, Chen C, Song Z, Wu J. Multi-branch convolutional attention network for multi-sensor feature fusion in intelligent fault diagnosis of rotating machinery. Quality Engineering. 2023; 36 (3):609-623. https://doi.org/10.1080/08982112.2023.2257762.
  • 22. Dehina W, Boumehraz M. Experimental investigation in induction motors using signal processing techniques for early detection of interturn short circuit faults. International Journal of Modelling and Simulation. 2022; 42(5): 855-867. https://doi.org/10.1080/02286203.2021.2001635.
  • 23. Kvasnikov V, Kvashuk D, Prygara M, Siryy D, Shelukha O. Devising a technique for assessing the accuracy of measuring electric motor torque. Eastern-European Journal of Enterprise Technologies. 2024;2(5):42-49. https://doi.org/10.15587/1729-4061.2024.302378.
  • 24. Hashish E, Miller K, Finley W, Kreitzer S. Vibration diagnostic challenges: case studies in electric motor applications. IEEE Industry Applications Magazine. 2017;23(4):22-34. https://doi.org/10.1109/MIAS.2016.2600718.
  • 25. Ganeriwala S. Induction motor diagnostics using vibration and motor current signature analysis. In: Allen M, Blough J, Mains M. (eds) Special Topics in structural dynamics & experimental techniques 2024, 5: SEM 2023. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-031-37007-6_21.
  • 26. Gubarevych O, Gerlici J, Gorobchenko O, Kravchenko K, Zaika D. Analysis of the features of application of vibration diagnostic methods of induction motors of transportation infrastructure using mathematical modeling. Diagnostyka. 2023; 24(1):2023111. https://doi.org/10.29354/diag/161308.
  • 27. Wei L, Rong X, Wang H, Yu S, Zhang Y. Method for identifying stator and rotor faults of induction motors based on machine vision. Mathematical Problems in Engineering. 2021; 6658648. https://doi.org/10.1155/2021/6658648.
  • 28. Vilhekar TG, Ballal MS, Suryawanshi HM. Application of multiple Park's vector approach for detection of multiple faults in induction motors. Journal of Power Electronics. 2017; 17(4): 972-982, https://doi.org/10.6113/JPE.2017.17.4.972.
  • 29. Wei S, Zhang X, Xu Y, Fu Y, Ren Z, Li F. Extended Park's vector method in early inter-turn short circuit fault detection for the stator windings of offshore wind doubly-fed induction generators. IET Gener. Transm. Distrib. 2020;14(18):3905-3912. https://doi.org/10.1049/iet-gtd.2020.0127.
  • 30. Gubarevych O, Goolak S, Melkonova I, Yurchenko M. Structural diagram of the built-in diagnostic system for electric drives of vehicles. Diagnostyka. 2022;23(4):2022406. https://doi.org/10.29354/diag/156382.
  • 31. Wang Z, Yang J, Li H, Zhen D, Xu Y, Gu F. Fault identification of broken rotor bars in induction motors using an improved cyclic modulation spectral analysis. Energies. 2019;12(17): 3279. https://doi.org/10.3390/en12173279.
  • 32. Abdelhak G, Sid Ahmed B, Djekidel R. Fault diagnosis of induction motors rotor using current signature with different signal processing techniques. Diagnostyka. 2022;23(2):2022201. https://doi.org/10.29354/diag/147462.
  • 33. Bazan GH, Goedtel A, Duque-Perez O, MorinigoSotelo D. Multi-fault diagnosis in three-phase induction motors using data optimization and machine learning techniques. Electronics. 2021; 10(12):1462. https://doi.org/10.3390/electronics10121462.
  • 34. Senthil Kumar R, Gerald Christopher Raj I, Suresh KP, Leninpugalhanthi P, Suresh M et al. A method for broken bar fault diagnosis in three phase induction motor drive system using Artificial Neural Networks. International Journal of Ambient Energy. 2022;43(1):5138-5144. https://doi.org/10.1080/01430750.2021.1934117.
  • 35. Martinez-Herrera AL, Ferrucho-Alvarez ER, Ledesma-Carrillo LM, Mata-Chavez RI, LopezRamirez M, Cabal-Yepez E. Multiple fault detection in induction motors through homogeneity and kurtosis computation. Energies. 2022;15(4):154. https://doi.org/10.3390/en15041541.
  • 36. Martinez J, Belahcen A, Muetze A. Analysis of the vibration magnitude of an induction motor with different numbers of broken bars. IEEE Transactions on Industry Applications. 2017; 53(3): 2711-2720. https://doi.org/10.1109/TIA.2017.2657478.
  • 37. Gritli Y, Di Tommaso AO, Filippetti F, Miceli R, Rossi C, Chatti A. Investigation of motor current signature and vibration analysis for diagnosing rotor broken bars in double cage induction motors. International Symposium on Power Electronics Power Electronics, Electrical Drives, Automation and Motion, Sorrento, Italy, 20-22 June 2012; IEEE: Piscataway, NJ, USA. 2012; 1360-1365. https://doi.org/10.1109/SPEEDAM.2012.6264465.
  • 38. Asad B, Vaimann T, Belahcen A, Kallaste A. Broken rotor bar fault diagnostic of inverter fed induction motor using FFT, Hilbert and Park's vector approach. XIII International Conference on Electrical Machines (ICEM). 2018; IEEE: 2352-2358. https://doi.org/10.1109/ICELMACH.2018.8506957.
  • 39. Javier Villalobos-Pina FA, Reyes-Malanche J, Cabal-Yepez E, Ramirez-Velasco E. Electric fault diagnosis in induction machines using motor current signature analysis (MCSA). Time Series Analysis - Recent Advances. New Perspectives and Applications. IntechOpen. 2024. http://dx.doi.org/10.5772/intechopen.1004002.
  • 40. Reyes-Malanche JA, Villalobos-Pina FJ, RamırezVelasco E, Cabal-Yepez E, Hernandez-Gomez G, Lopez-Ramirez M. Short-circuit fault diagnosis on induction motors through electric current phasor analysis and fuzzy logic. Energies. 2023; 16(1): 516. https://doi.org/10.3390/en16010516.
  • 41. Hassan O E, Amer M, Abdelsalam A K, Williams B W. Induction motor broken rotor bar fault detection techniques based on fault signature analysis - a review. IET Electric Power Applications. 2018; 12(7):895-907. https://doi.org/10.1049/ietepa.2018.0054.
  • 42. Abdellah C, Mama C, Meflah Abderrahmane M et al. Current Park’s vector pattern technique for diagnosis of broken rotor bars fault in saturated induction motor. J. Electr. Eng. Technol. 2023;18: 2749-2758. https://doi.org/10.1007/s42835-022- 01342-6.
  • 43. Gyftakis KN, Marques Cardoso AJ, Antonino-Daviu JA. Introducing the filtered Park’s and filtered extended park’s vector approach to detect broken rotor bars in induction motors independently from the rotor slots number. Mechanical Systems and Signal Processing. 2017;93:30-50. https://doi.org/10.1016/j.ymssp.2017.01.046.
  • 44. Mustapha M, Aymen F, Abdullah A A et.al. Diagnosis and fault detection of rotor bars in squirrel cage induction motors using combined Park’s vector and extended Park’s vector approaches. Electronics. 2022;11(3):380. https://doi.org/10.3390/electronics11030380.
  • 45. Zhang S, Zhang S, Wang B, Habetler TG. Deep learning algorithms for bearing fault monitoring - A comprehensive review. IEEE Access. 2020;8: 29857-29881. https://doi.org/10.1109/ACCESS.2020.2972859.
  • 46. Cerrada M, Sánchez RV, Li C, Pacheco F, Cabrera, de Oliveira JV, Vásquez RE. A review on datadriven fault severity assessment in rolling bearings. Mechanical Systems and Signal Processing. 2018; 99:169-196. https://doi.org/10.1016/j.ymssp.2017.06.012.
  • 47. Zheng J, Cao S, Pan H, Ni Q, Spectral envelopebased adaptive empirical Fourier decomposition method and its application to rolling bearing fault diagnosis, ISA Transactions. 2022; 129(B): 476-492. https://doi.org/10.1016/j.isatra.2022.02.049.
  • 48. Riabov Ie, Kondratieva L, Overianova L, Iakunin D, Yeritsyan B. Mathematical model of the traction system of an electric locomotive equipped with an on-board energy storage system. Transport Means 2023. Proceedings of the 27th International Scientific Conference Palanga, Lithuania. 2023; 1: 93-98.
  • 49. Goolak S, Sapronova S, Tkachenko V, Riabov Ie, Batrak Ye. Improvement of the model of power losses in the pulsed current traction motor in an electric locomotive. Eastern-European Journal of Enterprise Technologies. 2020;6):38-46. https://doi.org/10.15587/1729-4061.2020.218542.
  • 50. Priyadarshini MS, Bajaj M, Prokop L, Berhanu M. Perception of power quality disturbances using Fourier, Short-Time Fourier, continuous and discrete wavelet transforms. Sci Rep. 2024; 14: 3443. https://doi.org/10.1038/s41598-024-53792-9.
  • 51. Snigirov VM, Zhornyak LB. Electromekhanichni aparaty avtomatyky. Zaporizhzhia: ZPNU 2020.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-25c17c23-be51-4dbd-8dff-a743a77cdb65
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.