Warianty tytułu
Języki publikacji
Abstrakty
Elastic reverse-time migration (RTM) can reflect the underground elastic information more comprehensively than single-component Pwave migration. One of the most important requirements of elastic RTM is to solve wave equations. The imaging accuracy and efficiency of RTM depends heavily on the algorithms used for solving wave equations. In this paper, we propose an efficient staggered-grid finite-difference (SFD) scheme based on a sampling approximation method with adaptive variable difference operator lengths to implement elastic prestack RTM. Numerical dispersion analysis and wavefield extrapolation results show that the sampling approximation SFD scheme has greater accuracy than the conventional Taylor-series expansion SFD scheme. We also test the elastic RTM algorithm on theoretical models and a field data set, respectively. Experiments presented demonstrate that elastic RTM using the proposed SFD scheme can generate better images than that using the Taylor-series expansion SFD scheme, particularly for PS images. Furthermore, the application of adaptive variable difference operator lengths can effectively improve the computational efficiency of elastic RTM.
Czasopismo
Rocznik
Tom
Strony
1605--1625
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
autor
- Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China, yanhongyong@163.com
- British Geological Survey, Murchison House, Edinburgh, United Kingdom
autor
- Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
autor
- British Geological Survey, Murchison House, Edinburgh, United Kingdom
autor
- British Geological Survey, Murchison House, Edinburgh, United Kingdom
Bibliografia
- Balch, A.H., and C. Erdemir (1994), Sign-change correction for prestack migration of P-S converted wave reflections, Geophys. Prospect. 42, 6, 637-663, DOI: 10.1111/j.1365-2478.1994.tb00233.x.
- Baysal, E., D.D. Kosloff, and J.W.C. Sherwood (1983), Reverse time migration, Geophysics 48, 11, 1514-1524, DOI: 10.1190/1.1441434.
- Bérenger, J.P. (1994), A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys. 114, 2, 185-200, DOI: 10.1006/jcph.1994. 1159.
- Chang, W.F., and G.A. McMechan (1987), Elastic reverse-time migration, Geophysics 52, 10, 1365-1375, DOI: 10.1190/1.1442249.
- Chang, W.F., and G.A. McMechan (1994), 3D elastic prestack reverse-time depth migration, Geophysics 59, 4, 597-609, DOI: 10.1190/1.1443620.
- Chung, W., S. Pyun, H.S. Bae, C. Shin, and K.J. Marfurt (2012), Implementation of elastic reverse-time migration using wavefield separation in the frequency domain, Geophys. J. Int. 189, 3, 1611-1625, DOI: 10.1111/j.1365- 246X.2012.05431.x.
- Dablain, M.A. (1986), The application of high-order differencing to the scalar wave equation, Geophysics 51, 1, 54-66, DOI: 10.1190/1.1442040.
- Dellinger, J., and J. Etgen (1990), Wave-field separation in two-dimensional anisotropic media, Geophysics 55, 7, 914-919, DOI: 10.1190/1.1442906.
- Dong, L.G., Z.T. Ma, J.Z. Cao, H.Z. Wang, J.H. Gao, B. Lei, and S.Y. Xu (2000), A staggered-grid high-order difference method of one-order elastic wave equation, Chin. J. Geophys. 43, 411-419 (in Chinese).
- Du, Q., Y. Zhu, and J. Ba (2012), Polarity reversal correction for elastic reverse time migration, Geophysics 77, 2, S31-S41, DOI: 10.1190/geo2011–0348.1.
- Du, Q., X. Gong, M. Zhang, Y. Zhu, and G. Fang (2014), 3D PS-wave imaging with elastic reverse-time migration, Geophysics 79, 5, S173-S184, DOI: 10.1190/geo2013-0253.1.
- Gray, S.H., J. Etgen, J. Dellinger, and D. Whitmore (2001), Seismic migration problems and solutions, Geophysics 66, 5, 1622-1640, DOI: 10.1190/1.1487107.
- Hokstad, K. (2000), Multicomponent Kirchhoff migration, Geophysics 65, 3, 861- 873, DOI: 10.1190/1.1444783.
- Kindelan, M., A. Kamel, and P. Sguazzero (1990), On the construction and efficiency of staggered numerical differentiators for the wave equation, Geophysics 55, 1, 107-110, DOI: 10.1190/1.1442763.
- Kuo, J.T., and T.F. Dai (1984), Kirchhoff elastic wave migration for the case of noncoincident source and receiver, Geophysics 49, 8, 1223-1238, DOI: 10.1190/1.1441751.
- Li, J., D. Yang, and F. Liu (2013), An efficient reverse time migration method using local nearly analytic discrete operator, Geophysics 78, 1, S15-S23, DOI: 10.1190/geo2012-0247.1.
- Li, J., M. Fehler, D. Yang, and X. Huang (2015), 3D weak-dispersion reverse time migration using a stereo-modeling operator, Geophysics 80, 1, S19-S30, DOI: 10.1190/geo2013-0472.1.
- Liu, F., G. Zhang, S.A. Morton, and J.P. Leveille (2009), An optimized wave equation for seismic modeling and reverse time migration, Geophysics 74, 6, WCA153-WCA158, DOI: 10.1190/1.3223678.
- Liu, Y. (2014), Optimal staggered-grid finite-difference schemes based on leastsquares for wave equation modeling, Geophys. J. Int. 197, 2, 1033-1047, DOI: 10.1093/gji/ggu032.
- Liu, Y., and M.K. Sen (2009), An implicit staggered-grid finite-difference method for seismic modeling, Geophys. J. Int. 179, 1, 459-474, DOI: 10.1111/ j.1365-246X.2009.04305.x.
- Liu, Y., and M.K. Sen (2011a), Finite-difference modeling with adaptive variablelength spatial operators, Geophysics 76, 4, T79-T89, DOI: 10.1190/ 1.3587223.
- Liu, Y., and M.K. Sen (2011b), Scalar wave equation modeling with time-space domain dispersion-relation-based staggered-grid finite-difference schemes, Bull. Seismol. Soc. Am. 101, 1, 141-159, DOI: 10.1785/0120100041.
- Pei, Z. (2004), Numerical modeling using staggered-grid high order finite difference of elastic wave equation on arbitrary relief surface, Oil Geophys. Prospect. 39, 629-634 (in Chinese).
- Sun, R., and G.A. McMechan (2001), Scalar reverse-time depth migration of prestack elastic seismic data, Geophysics 66, 5, 1519-1527, DOI: 10.1190/ 1.1487098.
- Sun, R., G.A. McMechan, and H.-H. Chuang (2011), Amplitude balancing in separating P- and S-waves in 2D and 3D elastic seismic data, Geophysics 76, 3, S103-S113, DOI: 10.1190/1.3555529.
- Virieux, J. (1986), P-SV wave propagation in heterogeneous media: Velocity stress finite difference method, Geophysics 51, 4, 889-901, DOI: 10.1190/ 1.1442147.
- Whitmore, D. (1983), Iterative depth migration by backward time propagation. In: 53rd Annual International Meeting, SEG, Expanded Abstracts, 382-385.
- Yan, H., Y. Liu, and H. Liu (2013), Elastic prestack reverse-time migration using the time-space domain high-order staggered-grid finite-difference method. In: 83rd Annual International Meeting, SEG, Expanded Abstracts, 4005- 4009.
- Yan, H., L. Yang, and H. Liu (2015), Acoustic reverse-time migration using optimal staggered-grid finite-difference operator based on least squares, Acta Geophys. 63, 3, 715-734, DOI: 10.2478/s11600-014-0259-9.
- Yan, J., and P. Sava (2008), Isotropic angle-domain elastic reverse-time migration, Geophysics 73, 6, S229-S239, DOI: 10.1190/1.2981241.
- Yan, R., and X.B. Xie (2012), An angle-domain imaging condition for elastic reverse time migration and its application to angle gather extraction, Geophysics 77, 5, S105-S115, DOI: 10.1190/geo2011-0455.1.
- Yang, L., H. Yan, and H. Liu (2014), Least squares staggered-grid finite-difference for elastic wave modeling, Explor. Geophys. 45, 4, 255-260, DOI: 10.1071/ EG13087.
- Yang, L., H. Yan, and H. Liu (2015), Optimal rotated staggered-grid finitedifference schemes for elastic wave modeling in TTI media, J. Appl. Geophys. 122, 40-52, DOI: 10.1016/j.jappgeo.2015.08.007.
- Zhang, Y., and J. Sun (2009), Practical issues of reverse time migration: True amplitude gathers, noise removal and harmonic-source encoding, First Break 26, 19-25.
- Zhou, H., and G. Zhang (2011), Prefactored optimized compact finite difference schemes for second spatial derivatives, Geophysics 76, 5, WB87-WB95, DOI: 10.1190/geo2011-0048.1.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-2583299f-7c63-487a-a273-2647d063c127