Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 25, nr 8 | 130--140
Tytuł artykułu

Determination of Minimum Inhibitory Concentration of Chromium and Salinity on Chlorella vulgaris

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Heavy metal pollution, particularly chromium (VI) contamination, is a significant issue in Indonesian waters due to numerous chromium-producing industries. Research conducted in the downstream waters of Wonorejo found Cr(VI) levels ranging from 0.0025 to 0.018 mg/L, exceeding Indonesia’s quality standard of 0.002 mg/L. Thus, it is crucial to treat industrial wastewater containing Cr(VI) before disposal into water bodies. One alternative for treating Cr(VI) waste is using biological agents like microalgae. Chlorella sp. was chosen for this study due to its abundance in Indonesian waters. The study aims to determine the minimum inhibitory concentration (MIC) of Chlorella vulgaris against Cr(VI) and salinity variations. The research involved propagating the microalgae to analyze growth rates and conducting MIC tests against salinity for 14 days with variations of 0, 20, 30, and 40 ppt. MIC tests against Cr(VI) were then performed using the optimal salinity (20 ppt) with variations of 0, 5, 10, 20, 30, and 40 mg/L. Results showed that C. vulgaris can thrive in salinities up to 40 ppt, with the optimal salinity being 20 ppt. The optimal Cr(VI) concentration for growth was 5 mg/L, resulting in a growth rate of 1.17 cells/mL/day. Based on statistical analysis only concentration of Cr(VI) that affected C. vulgaris cell density and not the salinity.
Wydawca

Rocznik
Strony
130--140
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • Department of Environmental Engineering, Faculty of Civil, Planning and Geo Engineering, Institut Teknologi Sepuluh Nopember, Keputih, Surabaya, Indonesia, aliyahdevim@gmail.com
  • Department of Environmental Engineering, Faculty of Civil, Planning and Geo Engineering, Institut Teknologi Sepuluh Nopember, Keputih, Surabaya, Indonesia, harminsulis@gmail.com
  • Department of Ocean Engineering, Faculty of Marine Technology, Institut Teknologi Sepuluh Nopember, Keputih, Surabaya, Indonesia
  • Department of Environmental Engineering, Faculty of Civil, Planning and Geo Engineering, Institut Teknologi Sepuluh Nopember, Keputih, Surabaya, Indonesia, winda.kesoema@gmail.com
  • Department of Environmental Engineering, Universitas Pembangunan Nasional Veteran Jawa Timur, Rungkut, Surabaya, Indonesia
Bibliografia
  • 1. Aratboni, H.A., Rafiei, N., García-Granados, R., Alemzadeh, A., Morones-Ramirez, J. 2019. Biomass and lipid induction strategies in microalgae for biofuel production and other applications. Microbial Cell Factories, 18. https://doi.org/10.1186/s12934-019-1228-4
  • 2. Almutairi, A.W., El-Sayed, A.E.-K.B., Reda, M.M. 2021. Evaluation of high salinity adaptation for lipid bio-accumulation in the green microalga Chlorella vulgaris. Saudi Journal of Biological Sciences, 28(7), 3981–3988. https://doi.org/10.1016/j.sjbs.2021.04.007
  • 3. Andersen, R.A. (Ed.). 2005. Algal culturing techniques. Elsevier/Academic Press.
  • 4. Aththanayake, A.M.K.C.B., Rathnayake, I.V.N., Deeyamulla, M.P., Megharaj, M. 2022. Potential use of Chlorella vulgaris KCBAL01 from a freshwater stream receiving treated textile effluent in hexavalent chromium [Cr(VI)] removal in extremely acidic conditions. Journal of Environmental Science and Health, 57(9), 780–788. https://doi.org/10.1080/10934529.2022.2113281
  • 5. Brereton, R.G. 2019. ANOVA tables and statistical significance of models. Journal of Chemometrics, 33(3), e3019. https://doi.org/10.1002/cem.3019
  • 6. BTI. 2015. Algae to Energy – Using and Re-using a Hemocytometer to Count Algae Cells. BTI Science, 12, 1–3.
  • 7. Dyniari, Y.I.P., Farikhah, F., Rahim, A.R. 2019. Dinamika populasi C. vulgaris dalam paparan logam berat timbal (PB) dengan konsentrasi yang berbeda skala laboratorium. Jurnal Perikanan Pantura, 2(1), 42–50. https://doi.org/10.30587/jpp.v2i1.810
  • 8. Satriaji, D.E., Zainuri, M., Widowati, I. 2016. Study of growth and n, p content of microalgae Chlorella vulgaris cultivated in different culture media and light intensity. Jurnal Teknologi, 78, 2–4. https://doi.org/10.11113/jt.v78.8148
  • 9. Elperin, T., Fominykh, A., Krasovitov, B. 2007. Evaporation and condensation of large droplets in the presence of inert admixtures containing soluble gas. Journal of the Atmospheric Sciences, 64, 983995. https://doi.org/10.1175/JAS3878.1
  • 10. Gatamaneni, B.L., Orsat, V., Lefsrud, M. 2018. Factors affecting growth of various microalgal species. Environmental Engineering Science, 35(10), 1037–1048. https://doi.org/10.1089/ees.2017.0521
  • 11. Gray, S., Semiat, R., Duke, M., Rahardianto, A., Cohen, Y. 2011. Seawater Use and Desalination Technology. Treatise on Water Science, 4(04), 73–109. https://doi.org/10.1016/B978-0-444-53199-5.00077-4
  • 12. Hanifa, F. 2019. Pengaruh perbedaan salinitas dan dosis pupuk walne terhadap pertumbuhan populasi Chlorella sp pada skala laboratorium. Jurnal Online Mahasiswa Bidang Perikanan dan Ilmu Kelautan, 6, 1–14.
  • 13. Hlihor, R., Apostol, L., Pavel, L., Betianu, C., Sluser, B., Căliman, F., Gavrilescu, M. 2009. Overview on chromium occurrence in the environment and its remediation. Bulletin of the Polytechnic Institute of Iasi, Section Chemistry and Chemical Engineering, LV, 19–34.
  • 14. Juneja, A., Ceballos, R.M., Murthy, G.S. 2013. Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: A Review. Energies, 6(9), Article 9. https://doi.org/10.3390/en6094607
  • 15. Lee, L., Hsu, C.-Y., Yen, H.-W. 2017. The effects of hydraulic retention time (HRT) on chromium (VI) reduction using autotrophic cultivation of Chlorella vulgaris. Bioprocess and Biosystems Engineering, 40(12), 17251731. https://doi.org/10.1007/s00449-017-1827-6
  • 16. Musah, B.I., Wan, P., Xu, Y., Liang, C., Peng, L. 2022. Contrastive analysis of nickel (II), iron (II), copper (II), and chromium (VI) removal using modified Chlorella vulgaris and Spirulina platensis: Characterization and recovery studies. Journal of Environmental Chemical Engineering, 10(5), 108422. https://doi.org/10.1016/j.jece.2022.108422
  • 17. Nursanti, V., Hidayaturrahman, H., Hadiko, G. 2021. Studi pelepasan dan penanganan kromium dari air limpasan tambang PT. Vale Indonesia Tbk. Jurnal Rekayasa Pertambangan. 1(1).
  • 18. Romadhon, R.P., Mahmiah, Rahyono. 2017. Akumulasi logam berat Cr6+ pada air di Perairan Wonorejo Surabaya. Seminar Nasional Kelautan XII, 424, B86–B93.
  • 19. Rusdiani, R.R., Boedisantoso, R., Hanif, M. 2016. Optimalisasi teknologi fotobioreaktor mikroalga sebagai dasar perencanaan strategi mitigasi gas CO2 . Jurnal Teknik ITS, 5(2), F188–F192. https://doi.org/10.12962/j23373539.v5i2.16942
  • 20. Saputro, T.B., Purwani, K.I., Ermavitalini, D., Saifullah, A.F. 2019. Isolation of high lipids content microalgae from Wonorejo rivers, Surabaya, Indonesia and its identification using rbcL marker gene. Biodiversitas Journal of Biological Diversity, 20(5), 13801388. https://doi.org/10.13057/biodiv/d200530
  • 21. Sari, S.H.J., Kirana, J.F.A., Guntur, G. 2017. Analisis kandungan logam berat Hg dan Cu terlarut di Perairan Pesisir Wonorejo, Pantai Timur Surabaya. Jurnal Pendidikan Geografi, 22(1), 1–9. https://doi.org/10.17977/um017v22i12017p001
  • 22. Suharjo, M.H., Ernawati, R. 2022. Analisis Pencemaran Logam Kromium Heksavalen di Daerah Sungai pada Pertambangan Nikel. 6(2), 11978–11984.
  • 23. Unceta, N., Séby, F., Malherbe, J., Donard, O. 2010. Chromium speciation in solid matrices and regulation: A review. Analytical and Bioanalytical Chemistry, 397, 1097–1111. https://doi.org/10.1007/s00216-009-3417-1
  • 24. Waaly, A., Ridwan, A., Akbar, M. 2018. Development of sustainable procurement monitoring system performance based on Supply Chain Reference Operation (SCOR) and Analytical Hierarchy Process (AHP) on leather tanning industry. MATEC Web of Conferences, 204, 01008. https://doi.org/10.1051/matecconf/201820401008
  • 25. Wanta, K.C., Saptoaji, D., Miryanti, Y.I.P.A., Kristijarti, A.P. 2022. The effect of pH, initial concentration, and salinity on the biosorption process of chromium (VI) ions using microalgae Chlorella sp. IOP Conference Series: Earth and Environmental Science, 963(1), 012039. https://doi.org/10.1088/1755-1315/963/1/012039
  • 26. Wardana, M.T., Kuntjoro, S. 2023. Analisis kadar logam berat timbal (Pb) di Perairan Pelabuhan Teluk Lamong dan korelasinya terhadap kadar Pb kerang darah (Tegillarca granosa). Lentera Bio, 12(1), 41–49.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-257df535-73ab-4613-9639-f8bf8de53490
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.