Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | Vol. 66, nr 5 | 329–-342
Tytuł artykułu

Mechanical and electrical fields of piezoelectric curved sensors

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Based on the theory of elasticity, a comprehensive mathematical model is developed for a piezoelectric bimorph curved bar which is in a closed electrical circuit. First, the model is verified by considering an actuator under an initial electric potential, and the numerical results are compared with those of a related study in the literature. Then, the model is used to obtain the mechanical and electrical fields of a bimorph curved sensor subjected to a couple at its free end section. Hence, the bending that causes the generation of electric potential in the sensor is investigated. The influence of the applied couple on the mechanical and electrical fields in the curved sensor is examined, and the results are presented in graphical form.
Wydawca

Rocznik
Strony
329–-342
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
autor
autor
Bibliografia
  • 1. S. Tadigadapa, K. Mateti, Piezoelectric MEMS sensors: state-of-the-art and perspectives, Measurement Science Technology, 20, 092001, 2009.
  • 2. P. Kielczynski, W. Pajewski, M. Szalewski, Piezoelectric sensors for investigations of microstructures, Sensors and Actuators A, 65, 13–18, 1998.
  • 3. M.H. Shen, Analysis of beams containing piezoelectric sensors and actuators, Smart Material Structures, 3, 439–447, 1994.
  • 4. C. Onat, M. Sahin, Y. Yaman, Fractional controller design for suppressing smart beam vibrations, Aircraft Engineering and Aerospace Technology: An International Journal, 84, 203–212, 2012.
  • 5. D. Sun, L. Tong, Modeling and analysis of curved beams with debonded piezoelectric sensor/actuator patches, International Journal of Mechanical Sciences, 44, 1755–1777, 2002.
  • 6. Z.F. Shi, Bending behavior of piezoelectric curved actuator, Smart Materials and Structures, 14, 835–842, 2005.
  • 7. J.G. Smits, S.I. Dalke, T.K. Cooney, The constituent equations of piezoelectric bimorphs, Sensors and Actuators A, 28, 41–61, 1991.
  • 8. M. Brissaud, Modelling of non-symmetric piezoelectric bimorphs, Journal of Micromechanics and Microengineering, 14, 1507–1518, 2004.
  • 9. M. Brissaud, S. Ledren, P. Gonnard, Modelling of a cantilever non-symmetric piezoelectric bimorph, Journal of Micromechanics and Microengineering, 13, 832–844, 2003.
  • 10. H.J. Xiang, Z.F. Shi, Static analysis for multi-layered piezoelectric cantilevers, International Journal of Solids and Structures, 45, 113–128, 2008.
  • 11. M.S. Weinberg, Working equations for piezoelectric actuators and sensors, Journal of Microelectromechanical Systems, 8, 529–533, 1999.
  • 12. Z.F. Shi, Y. Chen, Functionally graded piezoelectric cantilever beam under load, Archive of Applied Mechanics 74, 237–247, 2004.
  • 13. T. Liu, Z.F. Shi, Bending behavior of functionally gradient piezoelectric cantilever, Ferroelectrics, 308, 43–51, 2004.
  • 14. T. Yu, Z. Zhong, Bending analysis of a functionally graded piezoelectric cantilever beam, Science in China Series G: Physics, Mechanics & Astronomy, 50, 97–108, 2007.
  • 15. T. Hauke, A. Kouvatov, R. Steinhausen, W. Seifert, H. Beige, H.T. Langhammer, H.P. Abicht, Bending behavior of functionally gradient materials, Ferroelectrics, 238, 195–202, 2000.
  • 16. Z.F. Shi, T. Zhang, Bending analysis of a piezoelectric curved actuator with a generally graded property for the piezoelectric parameter, Smart Materials and Structures, 17, 045018, 2008.
  • 17. T. Zhang, Z.F. Shi, Two-dimensional exact analysis for piezoelectric curved actuators, Journal of Micromechanics and Microengineering, 16, 640–647, 2006.
  • 18. S.P. Timoshenko, J.N. Goodier, Theory of Elasticity, McGraw-Hill, 1970.
  • 19. E. Arslan, A.N. Eraslan, Bending of graded curved bars at elastic limits and beyond, International Journal of Solids and Structures, 50, 806–814, 2013.
  • 20. E. Arslan, A.N. Eraslan, Analytical solution to the bending of a nonlinearly hardening wide curved bar, Acta Mechanica, 210, 71–84, 2010.
  • 21. E. Arslan, I.Y. Sulu, Yielding of a two-layer curved bar under pure bending, Zeitschrift für Angewandte Mathematik und Mechanik, 94, 713–720, 2014.
  • 22. P. Kielczynski, W. Pajewski, Influence of a layered polarization of piezoelectric ceramics on shear-horizontal surface-wave propagation, Applied Physics B, 48, 383–388, 1989.
  • 23. X. Ruan, S.C. Danforth, A. Safari, T.W. Choua, Saint-Venant end effects in piezoceramic materials, International Journal of Solids and Structures, 37, 2625–2637, 2000.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-24f0e893-4b1a-4cd6-bc21-b9311b434e28
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.