Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 31, nr 1 | 73--83
Tytuł artykułu

Unified protocol to evaluate intraoral scanner resolution, trueness and precision: the RTP-protocol

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Over the past decade, studies published on the evaluation of intraoral scanners (IOSs) have mainly considered two parameters, precision and trueness, to determine accuracy. The third parameter, resolution, not much studied, seems essential for an application in dentistry. Objective: The objective of this preliminary study is to create an original method - a Resolution-Trueness-Precision (RTP) protocol to evaluate these three main parameters - resolution trueness and precision - at the same time. Material and Method: A ceramic tip with particular and calibrated dimensions is determined as the reference object and its mesh recorded with a scanning microtomograph, and compared with the one extracted to the IOS. It is the particular geometric shape of the object that will make it possible to simultaneously assess: resolution, trueness and precision. Results: The results have shown a mean resolution of 79.2 μm, a mean for trueness of 17.5 and a mean for precision of 12.3 μm. These values are close to previous results published for this camera. So, the RTP protocol is the first including the three parameters at the same time. Simple, fast and precise, its application can be useful for comparisons between IOSs within research laboratories or test organizations. Finally, this study could be a first step to create a reference kit for practitioners allowing them to control the quality of their IOS over time.
Słowa kluczowe
Wydawca

Rocznik
Strony
73--83
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • Research-team ICAR, LIRMM, CNRS, Université de Montpellier, Montpellier, France
  • Centre de Soins, d’Enseignement et de Recherche Dentaires, CHU Montpellier, Montpellier, France
  • Laboratoire Bioingénierie et Nanosciences, Université de Montpellier, Montpellier, France
  • Laboratoire Bioingénierie et Nanosciences, Université de Montpellier, Montpellier, France
  • UFR d’odontologie, Université de Montpellier, Montpellier, France
  • Centre de Soins, d’Enseignement et de Recherche Dentaires, CHU Montpellier, Montpellier, France
  • Laboratoire Bioingénierie et Nanosciences, Université de Montpellier, Montpellier, France
  • UFR d’odontologie, Université de Montpellier, Montpellier, France
  • Centre de Soins, d’Enseignement et de Recherche Dentaires, CHU Montpellier, Montpellier, France
  • Laboratoire Bioingénierie et Nanosciences, Université de Montpellier, Montpellier, France
  • UFR d’odontologie, Université de Montpellier, Montpellier, France
  • Centre de Soins, d’Enseignement et de Recherche Dentaires, CHU Montpellier, Montpellier, France
Bibliografia
  • [1] Duret, F. (1973). Empreinte optique, Faculté Odontologie, Université Claude-Bernard, Lyon, 1974. (in French)
  • [2] Mangano, F., Gandolfi, A., Luongo, G., & Logozzo, S. (2017). Intraoral scanners in dentistry: a review of the current literature. BMC Oral Health, 17(1), 1-11.
  • [3] Richert, R., Farges, J. C., Tamimi, F., Naouar, N., Boisse, P., & Ducret, M. (2020). Validated finite element models of premolars: A scoping review. Materials, 13(15), 3280. https://doi.org/10.3390/ma13153280
  • [4] Sawase, T., & Kuroshima, S. (2020). The current clinical relevancy of intraoral scanners in implant dentistry. Dental Materials Journal, 39(1), 57-61. https://doi.org/10.4012/dmj.2019-285
  • [5] Suese, K. (2020). Progress in digital dentistry: The practical use of intraoral scanners. Dental Materials Journal, 39(1), 52-56. https://doi.org/10.4012/dmj.2019-224
  • [6] Radeke, J., Vogel, A. B., Schmidt, F., Kilic, F., Repky, S., Beyersmann, J., & Lapatki, B. G. (2022). Trueness of full-arch IO scans estimated based on 3D translational and rotational deviations of single teeth - an in vitro study. Clinical Oral Investigations, 26(3), 3273-3286. https://doi.org/10.1007{%}2Fs00784-021-04309-5
  • [7] Amin, S., Weber, H. P., Finkelman, M., El Rafie, K., Kudara, Y., & Papaspyridakos, P. (2017). Digital vs. conventional full-arch implant impressions: A comparative study. Clinical Oral Implants Research, 28(11), 1360-1367. https://doi.org/10.1111/clr.12994
  • [8] Nedelcu, R., Olsson, P., Nyström, I., Rydén, J., & Thor, A. (2018). Accuracy and precision of 3 intraoral scanners and accuracy of conventional impressions: A novel in vivo analysis method. Journal of Dentistry, 69, 110-118. https://doi.org/10.1016/j.jdent.2017.12.006
  • [9] Kihara, H., Hatakeyama, W., Komine, F., Takafuji, K., Takahashi, T., Yokota, J., Oriso, K., & Kondo, H. (2020). Accuracy and practicality of intraoral scanner in dentistry: A literature review. Journal of Prosthodontic Research, 64(2), 109-113. https://doi.org/10.1016/j.jpor.2019.07.010
  • [10] Zimmermann, M., Ender, A., & Mehl, A. (2020). Local accuracy of actual intraoral scanning systems for single-tooth preparations in vitro. The Journal of the American Dental Association, 151(2), 127-135. https://doi.org/10.1016/j.adaj.2019.10.022
  • [11] D’haese, R., Vrombaut, T., Roeykens, H., & Vandeweghe, S. (2022). In Vitro Accuracy of Digital and Conventional Impressions for Full-Arch Implant-Supported Prostheses. Journal of Clinical Medicine, 11(3), 594. https://doi.org/10.3390/jcm11030594
  • [12] International Organization for Standardization. (1994). Accuracy (trueness and precision) of measurement methods and results - Part 1: General principles and definitions (ISO 5725-1:1994). https://www.iso.org/obp/ui/{#}iso:std:iso:5725:-1:ed-1:v1:en
  • [13] Vág, J., Renne, W., Revell, G., Ludlow, M., Mennito, A., Teich, S. T., & Gutmacher, Z. (2021). The effect of software updates on the trueness and precision of intraoral scanners. Quintessence International, 52(7), 636-644. https://doi.org/10.3290/j.qi.b1098315
  • [14] Amornvit, P., Rokaya, D., & Sanohkan, S. (2021). Comparison of accuracy of current ten intraoral scanners. BioMed Research International, 2021. https://doi.org/10.1155/2021/2673040
  • [15] Sacher, M., Schulz, G., Deyhle, H., Jäger, K., & Müller, B. (2019, September). Comparing the accuracy of intraoral scanners, using advanced micro computed tomography. In Developments in X-Ray Tomography XII (Vol. 11113, pp. 386-395). SPIE. https://doi.org/10.1117/12.2530728
  • [16] Ellakany, P., Tantawi, M. E., Mahrous, A. A., & Al-Harbi, F. (2022). Evaluation of the accuracy of digital impressions obtained from intraoral and extraoral dental scanners with different CAD/CAM scanning technologies: an in vitro study. Journal of Prosthodontics, 31(4), 314-319. https://doi.org/10.1111/jopr.13400
  • [17] Waldecker, M., Rues, S., Rammelsberg, P., & Bömicke, W. (2021). Accuracy of complete-arch intraoral scans based on confocal microscopy versus optical triangulation: A comparative in vitro study. The Journal of Prosthetic Dentistry, 126(3), 414-420. https://doi.org/10.1016/j.prosdent.2020.04.019
  • [18] Chiu, A., Chen, Y. W., Hayashi, J., & Sadr, A. (2020). Accuracy of CAD/CAM digital impressions with different intraoral scanner parameters. Sensors, 20(4), 1157. https://doi.org/10.3390/s20041157
  • [19] Medina-Sotomayor, P., Pascual-Moscardó, A., & Camps, I. (2018). Relationship between resolution and accuracy of four intraoral scanners in complete-arch impressions. Journal of Clinical and Experimental Dentistry, 10(4). https://doi.org/10.4317/jced.54670
  • [20] Desoutter, A., Subsol, G., Fargier, E., Sorgius, A., Tassery, H., Fages, M., & Cuisinier, F. (2022). New method to analyze resolution acquisition for intraoral scanners. Metrology and Measurement Systems, 2(29), 391-404. https://doi.org/10.24425/mms.2022.140032
  • [21] Yamamoto, M., Kataoka, Y., & Manabe, A. (2017). Comparison of digital intraoral scanners by single-image capture system and full-color movie system. Bio-Medical Materials and Engineering, 28(3), 305-314. https://doi.org/10.3233/BME-171676
  • [22] Diker, B., & Tak, Ö. (2020). Comparing the accuracy of six intraoral scanners on prepared teeth and effect of scanning sequence. The Journal of Advanced Prosthodontics, 12(5), 299. https://doi.org/10.4047{%}2Fjap.2020.12.5.299
  • [23] A Nulty, A. B. (2021). A comparison of full arch trueness and precision of nine intra-oral digital scanners and four lab digital scanners. Dentistry Journal, 9(7), 75. https://doi.org/10.3390/dj9070075
  • [24] Jorquera, G. J., Sampaio, C. S., Bozzalla, A., Hirata, R., & Sánchez, J. P. (2021). Evaluation of trueness and precision of two intraoral scanners and a conventional impression: an in vivo clinical study. Quintessence Int, 52(10), 904-910. https://doi.org/10.3290/j.qi.b1901329
  • [25] Fattouh, M., Kenawi, L. M. M., & Fattouh, H. (2021). Effect of posterior span length on the trueness and precision of 3 intraoral digital scanners: A comparative 3-dimensional in vitro study. Imaging Science in Dentistry, 51(4), 399. https://doi.org/10.5624{%}2Fisd.20210076
  • [26] Kontis, P., Güth, J. F., & Keul, C. (2022). Correction to: Accuracy of full-arch digitalization for partially edentulous jaws - a laboratory study on basis of coordinate-based data analysis. Clinical Oral Investigations, 26(4), 3663. https://doi.org/10.1007{%}2Fs00784-022-04418-9
  • [27] Abduo, J., & Elseyoufi, M. (2018). Accuracy of Intraoral Scanners: A Systematic Review of Influencing Factors. The European Journal of Prosthodontics and Restorative Dentistry, 26(3), 101-121. https://doi.org/10.1922/ejprd_01752abduo21
  • [28] Ferrini, F., Sannino, G., Chiola, C., Capparé, P., Gastaldi, G., & Gherlone, E. F. (2019). Influence of intra-oral scanner (IOS) on the marginal accuracy of CAD/CAM single crowns. International Journal of Environmental Research and Public Health, 16(4), 544. https://doi.org/10.3390{%}2Fijerph16040544
  • [29] Sacher, M., Schulz, G., Deyhle, H., Jäger, K., & Müller, B. (2021). Accuracy of commercial intraoral scanners. Journal of Medical Imaging, 8(3), 035501-035501. https://doi.org/10.1117/1.jmi.8.3.035501
  • [30] Waldecker, M., Rues, S., Rammelsberg, P., & Bömicke, W. (2021). Accuracy of complete-arch intraoral scans based on confocal microscopy versus optical triangulation: a comparative in vitro study. The Journal of Prosthetic Dentistry, 126(3), 414-420. https://doi.org/10.1016/j.prosdent.2020.04.019
  • [31] Passos, L., Meiga, S., Brigagão, V., & Street, A. (2019). Impact of different scanning strategies on the accuracy of two current intraoral scanning systems in complete-arch impressions: an in vitro study. International Journal of Computerized Dentistry, 22(4), 307-319
  • [32] Dutton, E., Ludlow, M., Mennito, A. S., Kelly, A., Evans, Z., Culp, A., Kessler, R., & Renne, W. (2019). The effect different substrates have on the trueness and precision of eight different intraoral scanners. Journal of Esthetic and Restorative Dentistry, 32(2), 204-218. https://doi.org/10.1111/jerd.12528
  • [33] Diker, B., & Tak, Ö. (2022). Accuracy of six intraoral scanners for scanning complete-arch and 4-unit fixed partial dentures: An in vitro study. The Journal of Prosthetic Dentistry, 128(2), 187-194. https://doi.org/10.1016/j.prosdent.2020.12.007
  • [34] Ender, A., Zimmermann, M., & Mehl, A. (2019). Accuracy of complete-and partial-arch impressions of actual intraoral scanning systems in vitro. International Journal of Computerized Dentistry, 22(1), 11-19. https://doi.org/10.5167/uzh-180700
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-24e5e3f1-b750-4abc-a30d-d609f6605250
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.