Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | Vol. 63, no. 3 | 261--274
Tytuł artykułu

On Some Classes of Operators on C(K, X)

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Suppose X and Y are Banach spaces, K is a compact Hausdorff space, Σ is the σ-algebra of Borel subsets of K, C(K,X) is the Banach space of all continuous X-valued functions (with the supremum norm), and T : C(K,X) → Y is a strongly bounded operator with representing measure m : Σ → L(X,Y). We show that if T is a strongly bounded operator and T : B(K,X) → Y is its extension, then T is limited if and only if its extension T is limited, and that T is completely continuous (resp. unconditionally converging) if and only if T is completely continuous (resp. unconditionally converging). We prove that if K is a dispersed compact Hausdorff space and T is a strongly bounded operator, then T is limited (resp. weakly precompact, has a completely continuous adjoint, has an unconditionally converging adjoint) whenever m(A) : X → Y is limited (resp. weakly precompact, has a completely continuous adjoint, has an unconditionally converging adjoint) for each A ∈ Σ.
Wydawca

Rocznik
Strony
261--274
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
autor
  • Department of Mathematics, University of Wisconsin–River Falls, River Falls, WI 54022-5001, U.S.A., ioana.ghenciu@uwrf.edu
Bibliografia
  • [1] C. Abbott, Weakly precompact and GSP operators on continuous function spaces, Bull. Polish Acad. Sci. Math. 37 (1989), 467–476.
  • [2] K. Andrews, Dunford–Pettis sets in the space of Bochner integrable functions, Math. Ann. 241 (1979), 35–41.
  • [3] E. Bator and P. Lewis, Properties (V ) and (wV ) on C(Ω, X), Math. Proc. Cambridge Philos. Soc. 117 (1995), 469–477.
  • [4] E. Bator and P. Lewis, Operators having weakly precompact adjoints, Math. Nachr. 157 (1992), 99–103.
  • [5] E. Bator, P. Lewis, and J. Ochoa, Evaluation maps, restriction maps, and compactness, Colloq. Math. 78 (1998), 1–17.
  • [6] J. Batt and E. J. Berg, Linear bounded transformations on the space of continuous functions, J. Funct. Anal. 4 (1969), 215–239.
  • [7] F. Bombal, On (V*) sets and Pełczyński’s property (V*) Glasgow Math. J. 32 (1990), 109–120.
  • [8] F. Bombal and P. Cembranos, Characterizations of some classes of operators on spaces of vector-valued continuous functions, Math. Proc. Cambridge Philos. Soc. 97 (1985), 137–146.
  • [9] F. Bombal and B. Porras, Strictly singular and strictly cosingular operators on C(K, E), Math. Nachr. 143 (1989), 355–364.
  • [10] J. Bourgain and J. Diestel, Limited operators and strict cosingularity, Math. Nachr. 119 (1984), 55–58.
  • [11] J. K. Brooks and P. Lewis, Linear Operators and Vector Measures, Trans. Amer. Math. Soc. 192 (1974), 139–162.
  • [12] J. Diestel, Sequences and Series in Banach Spaces, Grad. Texts in Math. 92, Springer, Berlin, 1984.
  • [13] J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., 1977.
  • [14] N. Dinculeanu, Vector Measures, Pergamon Press, 1967.
  • [15] I. Dobrakov, On representation of linear operators on C0(T, X), Czechoslovak Math. J. 21 (1971), 13–30.
  • [16] I. Ghenciu, Limited sets and bibasic sequences, Canad. Math. Bull. 58 (2015), 71–79.
  • [17] I. Ghenciu, Weakly precompact subsets of L1(µ, X), Colloq. Math. 129 (2012), 133–143.
  • [18] I. Ghenciu and P. Lewis, Strongly bounded representing measures and convergence theorems, Glasgow Math. J. 52 (2010), 435–445.
  • [19] H. E. Lacey, The Isometric Theory of Classical Banach Spaces, Springer, 1974.
  • [20] A. Pełczyński and Z. Semadeni, Spaces of continuous functions (III), Studia Math. 18 (1959), 211–222.
  • [21] H. Rosenthal, Pointwise compact subsets of the first Baire class, Amer. J. Math. 99 (1977), 362–377.
  • [22] E. Saab and P. Saab, On unconditionally converging and weakly precompact operators, Illinois J. Math. 35 (1991), 522–531.
  • [23] T. Schlumprecht, Limited sets in Banach spaces, Dissertation, Münich, 1987.
  • [24] Z. Semadeni, Banach Spaces of Continuous Functions, PWN, Warszawa, 1971.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-24c78ea0-cece-428d-a90e-6133051bbe56
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.