Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 29, nr 4 | 565--579
Tytuł artykułu

The impact of propanol, n-butanol and pentanol on aqueous dispersions of sonicated liposomes. EPR study

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the effect of selected alcohols on the fluidity of liposome membranes obtained in sonication of DPPC lecithin. Using the EPR technique, the duality of propanol, n-butanol and pentanol on the behaviour of the aqueous dispersion of liposomes was demonstrated. It was shown that after exceeding a certain concentration, these alcohols initiate dispersion foaming, leading to phase separation: liposome dispersion - lipid foam. The influence of the shape of the molecule and the length of hydrocarbon chains on the effectiveness of destabilisation of the structure of lipid membranes was indicated.
Wydawca

Rocznik
Strony
565--579
Opis fizyczny
Bibliogr. 54 poz., rys., wykr.
Twórcy
  • Institute of Physics, Opole University, ul. Oleska 48, 45-052 Opole, Poland, phone +48 77 452 72 50
  • Institute of Physics, Opole University, ul. Oleska 48, 45-052 Opole, Poland, phone +48 77 452 72 50
autor
  • Institute of Physics, Opole University, ul. Oleska 48, 45-052 Opole, Poland, phone +48 77 452 72 50, dariusz.man@uni.opole.pl
Bibliografia
  • [1] Antošová B, Hrabák P, Antoš V, Wacławek S. Chemical oxidation of polycyclic aromatic hydrocarbons in water by ferrates(VI). Chem Eng S. 2020;27:529-42. DOI: 10.2478/eces-2020-0032.
  • [2] Marszałek A, Bohdziewicz J, Puszczało E. Co-treatment of municipal landfill leachate with dairy wastewater in membrane bioreactor. Ecol Chem Eng S. 2020;27:139-49. DOI: 10.2478/eces-2020-0009.
  • [3] Kavet R, Nauss KM. The toxicity of inhaled methanol vapors. Crit Rev Toxicol. 1990;21:21-50. DOI: 10.3109/10408449009089872.
  • [4] Ashurst JV, Nappe TM. Methanol Toxicity. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022. PMID: 29489213.
  • [5] McQueen ChA. Comprehensive Toxicology. Renal Toxicology. Pergamon; 1997;7. ISBN: 0080429726.
  • [6] Dalena F, Senatore A, Marino A, Gordano A, Basile M, Basile A. Methanol production and applications: An overview. Methanol Prod Appl Overv. Elsevier; 2018, p. 3-28. DOI: 10.1016/B978-0-444-63903-5.00001-7.
  • [7] Moreno L, Bello R, Primo-Yúfera E, Esplugues J. Pharmacological properties of the methanol extract from Mentha suaveolens Ehrh. Phytother Res. 2002;16:10-3. DOI: 10.1002/ptr.744.
  • [8] Lachenmeier DW. Safety evaluation of topical applications of ethanol on the skin and inside the oral cavity. J Occup Med Toxicol. 2008;3:26. DOI: 10.1186/1745-6673-3-26.
  • [9] Rusyn I, Bataller R. Alcohol and toxicity. J Hepatol. 2013;59:387-8. DOI: 10.1016/j.jhep.2013.01.035.
  • [10] Green AR, Grahame-Smith DG. Propranolol inhibits the behavioural responses of rats to increased 5-hydroxytryptamine in the central nervous system. Nature 1976:594-6. DOI: 10.1038/262594a0.
  • [11] Slaughter RJ, Mason RW, Beasley DMG, Vale JA, Schep LJ. Isopropanol poisoning. Clin Toxicol. 2014;52:470-8. DOI: 10.3109/15563650.2014.914527.
  • [12] Segal D, Bale AS, Phillips LJ, Sasso A, Schlosser PM, Starkey C, et al. Issues in assessing the health risks of n‐butanol. J Appl Toxicol. 2020;40:72-86. DOI: 10.1002/jat.3820.
  • [13] Patočka J, Kuča K. Toxic alcohols: aliphatic saturated alcohols. Mil Med Sci Lett. 2012;81:142-63. DOI: 10.31482/mmsl.2012.022.
  • [14] Jin C, Yao M, Liu H, Lee CF, Ji J. Progress in the production and application of n-butanol as a biofuel. Renew Sustain Energy Rev. 2011;15:4080-106. DOI: 10.1016/j.rser.2011.06.001.
  • [15] Venkataramanan KP, Kurniawan Y, Boatman JJ, Haynes CH, Taconi KA, Martin L, et al. Homeoviscous response of Clostridium pasteurianum to butanol toxicity during glycerol fermentation. J Biotechnol. 2014;179:8-14. DOI: 10.1016/j.jbiotec.2014.03.017.
  • [16] Pan M, Huang R, Liao J, Jia C, Zhou X, Huang H, et al. Experimental study of the spray, combustion, and emission performance of a diesel engine with high n-pentanol blending ratios. Energy Convers Manage. 2019;194:1-10. DOI: 10.1016/j.enconman.2019.04.054.
  • [17] Lachenmeier DW, Rehm J, Gmel G. Surrogate alcohol: what do we know and where do we go? Alcohol Clin Exp Res. 2007;31:1613-24. DOI: 10.1111/j.1530-0277.2007.00474.x.
  • [18] Singer SJ, Nicolson GL. The fluid mosaic model of the structure of cell membranes: Cell membranes are viewed as two-dimensional solutions of oriented globular proteins and lipids. Science 1972;175:720-31. DOI: 10.1126/science.175.4023.720.
  • [19] McConnell HM. Molecular Motion in Biological Membranes. Spin Labeling: Theory and Applications. New York: Academic Press; 1976, p. 525-60. ISBN: 0120923505.
  • [20] Sackmann E. Dynamic molecular organization in vesicles and membranes. Berichte Bunsenges Phys Chem. 1978;82:891-909. DOI: 10.1002/bbpc.19780820925.
  • [21] Man D, Słota R, Broda MA, Mele G, Li J. Metalloporphyrin intercalation in liposome membranes: ESR study. JBIC J Biol Inorg Chem. 2011;16:173-81. DOI: 10.1007/s00775-010-0715-1.
  • [22] Matos C, Moutinho C, Lobão P. Liposomes as a model for the biological membrane: Studies on daunorubicin bilayer interaction. J Membr Biol. 2012;245:69. DOI: 10.1007/s00232-011-9414-2.
  • [23] Sessa G, Weissmann G. Phospholipid spherules (liposomes) as a model for biological membranes. J Lipid Res. 1968:310. DOI: 10.1016/S0022-2275(20)43097-4.
  • [24] Park J-S, Jung T-S, Noh Y-H, Kim W-S, Park W-I, Kim Y-S, et al. The effect of lidocaine · HCl on the fluidity of native and model membrane lipid bilayers. Korean J Physiol Pharmacol. 2012;16:413-22. DOI: 10.4196/kjpp.2012.16.6.413.
  • [25] Hossain M, Blanchard GJ. Effects of ethanol and n-butanol on the fluidity of supported lipid bilayers. Chem Phys Lipids. 2021;238:105091. DOI: 10.1016/j.chemphyslip.2021.105091.
  • [26] Xiaomei M, Zhensheng Z. Preparation and properties of poly(vinyl alcohol)-stabilized liposomes. Int J Pharm. 2006;218:55-61. DOI: 10.1016/j.ijpharm.2006.03.016.
  • [27] Domazou AS, Luisi PL. Size distribution of spontaneously formed liposomes by the alcohol injection method. J Liposome Res. 2002;12:205-20. DOI: 10.1081/lpr-120014758.
  • [28] Yang Y-M, Wu K-C, Huang Zheng-L, Chang C-H. On the stability of liposomes and catansomes in aqueous alcohol solutions. Langmuir. 2008;24:1695-700. DOI: 10.1021/la701882d.
  • [29] Cui J, Li C, Deng Y, Wang Y, Wang W. Freeze-drying of liposomes using tertiary butyl alcohol/water cosolvent systems. Int J Pharm. 2006;312:131-6. DOI: 10.1016/j.ijpharm.2006.01.004.
  • [30] Andrade J, González-Martínez C, Chiralt A. The incorporation of carvacrol into poly (vinyl alcohol) films encapsulated in lecithin liposomes. Polymers. 2020;12:497. DOI: 10.3390/polym12020497.
  • [31] Wang X, Yang L, Chen Z, Shin DM. Application of nanotechnology in cancer therapy and imaging. CA Cancer J Clin. 2008;58:97-110. DOI: 10.3322/CA.2007.0003.
  • [32] Vasir J, Labhasetwar V. Biodegradable nanoparticles for cytosolic delivery of therapeutics. Adv Drug Deliv Rev. 2007;59:718-28. DOI: 10.1016/j.addr.2007.06.003.
  • [33] Gabizon A, Goren D, Cohen R, Barenholz Y. Development of liposomal anthracyclines: from basics to clinical. J Controlled Release. 1998;53:275-9. DOI: 10.1016/S0168-3659(97)00261-7.
  • [34] Sahoo SK, Labhasetwar V. Nanotech approaches to drug delivery and imaging. Drug Discov Today. 2003;8:1112-20. DOI: 10.1016/S1359-6446(03)02903-9.
  • [35] Torchilin V. Antibody-modified liposomes for cancer chemotherapy. Expert Opin Drug Deliv. 2008;5:1003-25. DOI: 10.1517/17425247.5.9.1003.
  • [36] Budai M, Szógyi M. Liposomes as drug carrier systems. Preparation, classification and therapeutic advantages of liposomes. Acta Pharm Hung. 2001;71:114-8. PMID: 11769091.
  • [37] Pjanović R, Bošković-Vragolović N, Velijković-Giga J, Garić-Grulowić R, Pejanović S, Bugarski B. Diffusion of drugs from hydrogels and liposomes as drug carriers. J Chem Technol Biotechnol. 2010;85:693-8. DOI: 10.1002/jctb.2357.
  • [38] Dichello GA, Fukuda T, Maekawa T, Whitby RLD, Mikhalovsky SV, Alavijeh M, et al. Preparation of liposomes containing small gold nanoparticles using electrostatic interactions. Eur J Pharm Sci. 2017:55-63. DOI: 10.1016/j.ejps.2017.05.001.
  • [39] Kanwa N, De SK, Adhikari C, Chakraborty A. Spectroscopic study of the interaction of carboxyl-modified gold nanoparticles with liposomes of different chain lengths and controlled drug release by layer-by-layer technology. J Phys Chem B. 2017;121:11333-43. DOI: 10.1021/acs.jpcb.7b08455.
  • [40] Man D, Pisarek I, Braczkowski M, Pytel B, Olchawa R. The impact of humic and fulvic acids on the dynamic properties of liposome membranes: the ESR method. J Liposome Res. 2014;24:106-12. DOI: 10.3109/08982104.2013.839998.
  • [41] Coderch L, Fonollosa MDP, Pera MD, Estelrich J, Maza ADL, Parra JL. Influence of cholesterol on liposome fluidity by EPR. Relationship with percutaneous absorption. J Controlled Release. 2000;68:85-95. DOI: 10.1016/s0168-3659(00)00240-6.
  • [42] Subongkot T, Ngawhirunpat T. Effect of liposomal fluidity on skin permeation of sodium fluorescein entrapped in liposomes. Int J Nanomedicine. 2015;10:4581-92. DOI: 10.2147/IJN.S86624.
  • [43] Dyrda G, Boniewska-Bernacka E, Man D, Barchiewicz K, Słota R. The effect of organic solvents on selected microorganisms and model liposome membrane. Mol Biol Rep. 2019;46:3225-32. DOI: 10.1007/s11033-019-04782-y.
  • [44] Man D, Słota R, Kawecka A, Engel G, Dyrda G. Liposomes modified by mono- and bis-phthalocyanines: A comprehensive EPR study. Eur Phys J E. 2017;40:63. DOI: 10.1140/epje/i2017-11550-4.
  • [45] Wałęsa R, Man D, Engel G, Siodłak D, Kupka T, Ptak T, et al. The impact of model peptides on structural and dynamic properties of egg yolk lecithin liposomes - experimental and DFT studies. Chem Biodivers. 2015;12:1007-24. DOI: 10.1002/cbdv.201400179.
  • [46] Man D, Olchawa R. Dynamics of surface of lipid membranes: theoretical considerations and the ESR experiment. Eur Biophys J. 2017;46:325-34. DOI: 10.1007/s00249-016-1172-8.
  • [47] Sowa GZ, Qin PZ. Site-directed spin labeling studies on nucleic acid structure and dynamics. Progr Nucleic Acid Res. Mol Biol. 2008;82:147-97. DOI: 10.1016/S0079-6603(08)00005-6.
  • [48] Griffith OH, Jost P. Lipid spin labels in biological membranes. Spin Labeling: Theory and Applications. New York: Academic Press; 1976;1:453-523. ISBN: 0120923505. DOI: 10.1016/B978-0-12-092350-2.50017-5
  • [49] Schreier S, Polnaszek CF, Smith ICP. Spin labels in membranes problems in practice. Biochim Biophys Acta. BBA - Rev Biomembr. 1978;515:395-436. DOI: 10.1016/0304-4157(78)90011-4.
  • [50] Shimshick EJ, McConnell HM. Lateral phase separation in phospholipid membranes. Biochemistry. 1973;12:2351-60. DOI: 10.1021/bi00736a026.
  • [51] Mitrus S, Man D. Effect of tin and lead chlorotriphenyl analogues on fruit fly Drosophila hydei and liposomes membrane. J Biochem Mol Toxicol. 2012;26:162-7. DOI: 10.1002/jbt.21403.
  • [52] Hemminga MA. Interpretation of ESR and saturation transfer ESR spectra of spin labeled lipids and membranes. Chem Phys Lipids. 1983:323-83. DOI: 10.1016/0009-3084(83)90040-3.
  • [53] Pytel B, Filipiak A, Pisarek I, Olchawa R, Man D. Impact of humic acids on EYL liposome membranes: ESR method. Nukleonika. 2015;60:455-9. DOI: 10.1515/nuka-2015-0081.
  • [54] Wang G, Garvey C, Zhao H, Huang K, Kong L. Toward the fabrication of advanced nanofiltration membranes by controlling morphologies and mesochannel orientations of hexagonal lyotropic liquid crystals. Membranes. 2017;7:37. DOI: 10.3390/membranes7030037.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-24322ae7-e5c9-4de4-a98c-f26842d57eef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.