Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | Vol. 24, nr 2 | 185--195
Tytuł artykułu

Composite relaxed resolvent operator and Yosida approximation operator for solving a system of Yosida inclusions

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we first study a composite relaxed resolvent operator and prove some of its properties. After that, we introduce a Yosida approximation operator based on the composite relaxed resolvent operator and demonstrate some properties of the Yosida approximation operator. Finally, we obtain the solution of a system of Yosida inclusions by applying these concepts.We construct a conjoin example in support of many concepts derived in this paper. Our concepts and results are new in the literature and can be used for further research.
Słowa kluczowe
Wydawca

Rocznik
Strony
185--195
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
  • Madhya Pradesh 484-887; and L. 1627 Awadh Puri Colony Beniganj, Phase - III, Opposite - Industrial Training Institute (I.T.I.), Ayodhya Main Road Faizabad-224 001, (Uttar Pradesh), India, vishnunarayanmishra@gmail.com
autor
autor
Bibliografia
  • [1] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, International Publishing, Leyden, 1976.
  • [2] F. E. Browder, Nonlinear Operators and Nonlinear Equations of Evolution in Banach Spaces American Mathematical Society, Providence, 1976.
  • [3] H.-W. Cao, Sensitivity analysis for a system of generalized nonlinear mixed quasi variational inclusions with H-monotone operators, J. Appl. Math. 2011 (2011), Article ID 921835.
  • [4] H.-W. Cao, Yosida approximation equations technique for system of generalized set-valued variational inclusions, J. Inequal. Appl. 2013 (2013), Paper No. 455.
  • [5] X. P. Ding, Generalized quasi-variational-like inclusions with nonconvex functionals, Appl. Math. Comput. 122 (2001), no. 3, 267-282.
  • [6] Y.-P. Fang and N.-J. Huang, H-monotone operator and resolvent operator technique for variational inclusions, Appl. Math. Comput. 145 (2003), no. 2-3, 795-803.
  • [7] P. Hartman and G. Stampacchia, On some non-linear elliptic differential-functional equations, Acta Math. 115 (1966), 271-310.
  • [8] A. Hassouni and A. Moudafi, A perturbed algorithm for variational inclusions, J. Math. Anal. Appl. 185 (1994), no. 3, 706-712.
  • [9] V. Lakshmikantham and S. Leela, Nonlinear Differential Equations in Abstract Spaces, Pergamon Press, Oxford, 1981.
  • [10] H.-Y. Lan, Generalized Yosida approximations based on relatively A-maximal m-relaxed monotonicity frameworks, Abstr. Appl. Anal. 2013 (2013), Article ID 157190.
  • [11] M. Rahaman, R. Ahmad, M. Dilshad and I. Ahmad, Relaxed η-proximal operator for solving a variational-like inclusion problem, Math. Model. Anal. 20 (2015), no. 6, 819-835.
  • [12] G. Stampacchia, Formes bilinéaires coercitives sur les ensembles convexes, C. R. Acad. Sci. Paris 258 (1964), 4413-4416.
  • [13] R. U. Verma, A-monotonicity and applications to nonlinear variational inclusion problems, J. Appl. Math. Stoch. Anal. 2004 (2004), no. 2, 193-195.
  • [14] R. U. Verma, General nonlinear variational inclusion problems involving A-monotone mappings, Appl. Math. Lett. 19 (2006), no. 9, 960-963.
  • [15] R. U. Verma, Hybrid inexact proximal point algorithms based on RMM frameworks with applications to variational inclusion problems, J. Appl. Math. Comput. 39 (2012), no. 1-2, 345-365.
  • [16] J. Zhou and G. Chen, Diagonal convexity conditions for problems in convex analysis and quasi-variational inequalities, J. Math. Anal. Appl. 132 (1988), no. 1, 213-225.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-23c10bc4-9ea3-4a30-aed7-7af29df81454
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.