Czasopismo
2022
|
Vol. 55, nr 1
|
831--842
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
In this article, we will prove the existence of infinitely many solutions for a class of quasilinear Schrödinger equations without assuming the 4-superlinear at infinity on the nonlinearity. We achieve our goal by using the Fountain theorem.
Czasopismo
Rocznik
Tom
Strony
831--842
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
- Département de Mathématique et Informatique, Laboratoire de Modélisation et Combinatoire, Université Cadi Ayyad, B.P. 4162 Safi, Morocco, mostapha-2@hotmail.com
autor
- Département de Mathématique et Informatique, Laboratoire de Modélisation et Combinatoire, Université Cadi Ayyad, B.P. 4162 Safi, Morocco
Bibliografia
- [1] S. Kurihara, Large-amplitude quasi-solitons in superfluid films, J. Phys. Soc. Japan 50 (1981), no. 10, 3262–3267
- [2] E. W. Laedke, K. H. Spatschek, and L. Stenflo, Evolution theorem for a class of perturbed envelope soliton solutions, J. Math. Phys. 24 (1983), no. 12, 2764–2769.
- [3] A. Nakamura, Damping and modification of exciton solitary waves, J. Phys. Soc. Japan 42 (1977), no. 6, 1824–1835.
- [4] M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: a dual approach, Nonlinear Anal. Theory Meth. Appl. 56 (2004), no. 2, 213–226.
- [5] X.-Q. Liu, J.-Q. Liu, and Z.-Q. Wang, Quasilinear elliptic equations via perturbation method, Proc. Am. Math. Soc. 141 (2013), no. 1, 253–263.
- [6] K. Wu, Positive solutions of quasilinear Schrödinger equations with critical growth, Applied Math. Lett. 45 (2015), 52–57.
- [7] X. Yang, X. Tang, and Y. Zhang, Positive, negative and sign-changing solutions to a quasilinear Schrödinger equation with a parameter, J. Math. Phys. 60 (2019), no. 12, 121510.
- [8] J. Zhang, X. Tang, and W. Zhang, Infinitely many solutions of quasilinear Schrödinger equation with sign-changing potential, J. Math. Anal. Appl. 420 (2014), no. 2, 1762–1775.
- [9] C. O. Alves, Y. Wang, and Y. Shen, Soliton solutions for a class of quasilinear Schrödinger equations with a parameter, J. Differential Equations 259 (2015), no. 1, 318–343.
- [10] C. O. Alves and G. M. Figueiredo, Multiple solutions for a quasilinear Schrödinger equation on RN, Acta Applicandae Mathematicae 136 (2015), no. 1, 91–117.
- [11] C. O. Alves, G. M. Figueiredo, and U. B. Severo, A result of multiplicity of solutions for a class of quasilinear equations, Edinburgh Math. Soc. Proc. Edinburgh Math. Soc. 55 (2012), no. 2, 291.
- [12] M. Willem, Minimax Theorems, Progress in nonlinear differential equations and their applications, vol. 24, Birkhäuser Boston Inc., Boston, 1996.
- [13] T. Bartsch and Z. Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on RN : Existence and multiplicity results, Comm. Partial Differential Equations 20 (1995), no. 9–10, 1725–1741.
- [14] T. Bartsch, Z.-Q. Wang, and M. Willem, The Dirichlet problem for superlinear elliptic equations, Handbook Differential Equations-Stationary Partial Differential Equations 2 (2005), no. 1, 1–55.
- [15] J.-Q. Liu, Y.-Q. Wang, and Z.-Q. Wang, Soliton solutions for quasilinear Schrödinger equations, ii, J. Differential Equations 187 (2003), no. 2, 473–493.
- [16] R. Adams, Sobolev Spaces, vol. 1, AC Press, New York, 1975, p. 975.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-23bdba0b-20f5-4ca6-b202-c88c02a31b91