Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 22, no. 2 | art. no. e61, 1--15
Tytuł artykułu

The investigation of the optimization scheme of the low‑cycle fatigue cropping based on the acoustic emission technique

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Low-cycle fatigue cropping (LCFC) is a new metal bar separation method which utilizes the material fracture under cyclic load. To achieve good and fast separation of metal bars, a control scheme based on characteristics of whole cropping process is necessary. Three kinds of materials, such as 16Mn, 1045 and Al 6061, have been operated in this study and found that the kurtosis is more suitable as a monitoring parameter in control method, because it has a better stability in the complicated industrial environment. In addition, crack instability stage formed the most uneven region on the section and the best time when change the frequency is before crack instability stage. According to the above results, an optimal control scheme which by reducing the loading frequency before the crack instability stage based on the acoustic emission kurtosis is proposed. Moreover, four control strategies’ results for three kinds of materials are compared, and find the section quality increases with the decrease of loading frequency, but the effect of this increase decreases with the decrease of loading frequency. To evaluate the advantages and disadvantages of the control strategy, a parameter combining efficiency and section quality is proposed, and according to this parameter, the most suitable control strategy for three materials is obtained.
Wydawca

Rocznik
Strony
art. no. e61, 1--15
Opis fizyczny
Bibliogr. 22 poz., il., tab., wykr.
Twórcy
autor
  • School of Mechanical Engineering, Xi’an Jiaotong University, Shaanxi, China, 857280283@qq.com
  • School of Mechanical Engineering, Xi’an Jiaotong University, Shaanxi, China
autor
  • School of Mechanical Engineering, Xi’an Jiaotong University, Shaanxi, China, liuboyoung@163.com
autor
  • School of Mechanical Engineering, Xi’an Jiaotong University, Shaanxi, China
Bibliografia
  • 1. Hua CJ, Zhao SD, Zhang LJ, Liu W. Investigation of a new-type precision cropping system with variable-frequency vibration. Int J Mech Sci. 2006;48(12):1333-1340.
  • 2. Dong YZ, Li JX, Ren YJ, Fan SQ, Zhao SD. Laser-assisted cyclic chip less splitting for hard-to-cut thick wall tubes and fatigue fracture mechanism analysis. Int J Mech Sci. 2020;168.
  • 3. Wang ZW, Zhao SD, Yu YT. Study on the dynamic characteristics of the low-stress vibration cropping machine. J Mater Process Technol. 2007;190(1):89-95.
  • 4. Zhong B, Zhao SD, Zhao RF, Guo T. Investigation on the influences of clearance and notch-sensitivity on a new type of metal-bar non-chip fine-cropping system. Int J Mech Sci. 2013;76:144-151.
  • 5. Zhang LJ, Zhao SD, Lei J, Liu W. Investigation on the bar clamping position of a new type of precision cropping system with variable frequency vibration. Int J Mach Tools Manuf. 2007;47(7):1125-1131.
  • 6. Zhao SD, Zhang LJ, Lei J, Wang ZW. Numerical study on heat stress prefabricating ideal crack at the bottom of V shaped notch in precision cropping. J Mater Process Technol. 2007;187-188:363-367.
  • 7. Zhao RF, Zhao SD, Zhong B, Tang Y. Experimental investigation on new low cycle fatigue precision cropping process. Proc Inst Mech Eng Part C-J Mech Eng Sci. 2015;229(8):1470-6.
  • 8. Carolan TA, Kidd SR, Hand DP. Acoustic emission monitoring of tool wear during the face milling of steels and aluminium alloys using a fibre optic sensor energy analysis. Proc Inst Mech Eng Part B-J Eng Manuf. 1997;211(4):299-309.
  • 9. Fang D, Berkovits A. Fatigue design model based on damage mechanisms revealed by acoustic emission measurements. J Eng Mater Technol. 1995;117(2):200-208.
  • 10. Roberts TM, Talebzadeh M. Acoustic emission monitoring of fatigue crack propagation. J Construct Steel Res. 2003;59(6):695-712.
  • 11. Elforjani M, Mba D. Detecting natural crack initiation and growth in slow speed shafts with the Acoustic Emission technology. Eng Fail Anal. 2009;16(7):2121-9.
  • 12. Han ZY, Luo HY, Cao JW, Wang HW. Acoustic emission during fatigue crack propagation in a micro-alloyed steel and welds. Mater Sci Eng A. 2011;528(25-26):7751–6.
  • 13. Yu JG, Paul Z, Fabio M, Adrian P. Acoustic emission detection of fatigue damage in cruciform welded joints. J Constr Steel Res. 2013;86:85-91.
  • 14. Aggelis DG, Kordatos EZ, Matikas TE. Acoustic emission for fatigue damage characterization in metal plates. Mech Res Commun. 2011;38(2):106-110.
  • 15. Chai MY, Zhang ZX, Duan Q, Song Y. Assessment of fatigue crack growth in 316LN stainless steel based on acoustic emission entropy. Int J Fatigue. 2018;109:145-156.
  • 16. Li JX, Qiu H, Zhang DW, Zhao SD, Zhao YQ. Acoustic emission characteristics in eccentric rotary cropping process of stainless steel tube. Int J Adv Manuf Technol. 2017;92(1-4):777-788.
  • 17. Ren YJ, Dong YZ, Li JX, Zhao F, Zhao SD, Zhang LJ, Wang YF, Jin D. The investigation of low-cycle fatigue crack propagation of 16 Mn eccentric bar based on the acoustic emission technique. Proc Inst Mech Eng Part B: J Eng Manuf. 2021;235(6-7):1235-47.
  • 18. Predicting the J integral fracture toughness of Al 6061 using the small punch test[J]. Fatigue & Fracture of Engineering Materials & Structures, 2007, 30(9).
  • 19. Marcelo AL, Tokimatsu RC, Ferreira I. Hydrogen embrittlement in an AISI 1045 steel component of the sugarcane industry. Eng Fail Anal. 2009;16(1):468-474.
  • 20. Carpinteri A, Ronchei C, Vantadori S. Stress intensity factors and fatigue growth of surface cracks in notched shells and round bars: two decades of research work. Fatigue Fract Eng Mater Struct. 2013;36(11SI):1164-77.
  • 21. Ritchie RO, Knott JF. Mechanisms of fatigue crack growth in low alloy steel. Acta Metall. 1973;21(5):639-648.
  • 22. Ruiz-Cárcel C, Hernani-Ros E, Cao Y, Mba D. Use of spectral kurtosis for improving signal to noise ratio of acoustic emission signal from defective bearings. J Failure Anal Prevent. 2014;14(3):363-371.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-23a7913a-917c-404c-b832-e0bade8a3bd5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.