Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | Vol. 20, nr 4 | 579--593
Tytuł artykułu

Development of a CFD model for propeller simulation

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents a development of numerical model for a single propeller simulation and comparison of obtained results with experimental data available from a test campaign in scale 1:1. Described simulation is a steady state computation taking advantage of Multiple Reference Frame model implemented in Ansys CFX. The paper includes an analysis of rotating domain thickness influence on numerical values of thrust and power. The results indicate that this type of simulation may be sensitive to the sizing of rotating domain especially when disc solidity is low, or when the number of blades is 2, a frequent situation in all electric flight vehicles. The analysis shows that performing simulations, using one domain sizing, for a number of flight scenarios requiring analysis of a few rotational speeds can produce unintuitive results. Therefore, it is suggested to calibrate the model, preferably by experimental results.
Słowa kluczowe
Wydawca

Rocznik
Strony
579--593
Opis fizyczny
Bibliogr. 13 poz.
Twórcy
autor
  • Lodz University of Technology Institute of Turbomachinery
  • Lodz University of Technology Institute of Turbomachinery
autor
  • Lodz University of Technology Institute of Turbomachinery
Bibliografia
  • [1] Clean Sky, Overview of the Proposed Programme, 2013. Online: www.cleansky.eu/sites/default/files/documents/20131009 cs2programme overviewfinal.pdf.
  • [2] [http://newatlas.com/project-zero-electric-tilt-rotor-aircraft/26561/#gallery]
  • [3] e–volo GmbH, Online: http://www.e-volo.com/.
  • [4] Betz, A., with appendix by Prandtl, L. Screw Propellers with Minimum Energy Loss, Gottingen Reports, 193–213, 1919.
  • [5] Glauert, H.: Airplane Propellers, :Aerodynamic Theory, edited by W. Durand, Div. L, Vol.5, Peter Smith, Gloucester, MA, 169–269, 1976.
  • [6] Gessow A.: Effect of rotor blade twist and planform tapper on helicopter performance, NACA Technical note, no. 1542, 1948.
  • [7] Hartman, E. P. and Birdman, D.: The aerodynamics of full scale propellers having 2, 3 and 4, blades of Clark Y and R. A. F. 6 airfoil sections, NACA Report no. 640, 1938.
  • [8] Harrington, R. D.: Full–Scale Tunnel Investigation of the Static Thrust Performance of a Coaxial Helicopter Rotor, NACA Technical Note, 2318, 1951.
  • [9] Leishman, G. J.: Principles of helicopter aerodynamics, Cambridge University Press, 2006.
  • [10] Juhasz, O., et al.: Comparison of Three Coaxial Aerodynamic Prediction Methods Including Validation with Model Test Data, J AM HELICOPTER SOC, 59, 3, 1–14, 2014.
  • [11] Syal, M. and Leishman, J. G.: Aerodynamic optimization study of a coaxial rotor in hovering flight, J AM HELICOPTER SOC, 57, 4, 1–15, 2012.
  • [12] ANSYS, C. F. X. Solver modelling guide, Release 17, 2016.
  • [13] Karczewski, M., and Eglin P.: Application of the modified blade element method for propeller blade design on high–speed helicopter X3, CMP-Turbomachinery, LUT, 145, 63–64, 2014.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-239be9db-78c0-4893-9a89-997b14c501e6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.