Czasopismo
2016
|
Vol. 68, nr 6
|
441--458
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
In the present paper the linear theory of viscoelasticity for Kelvin–Voigt materials with double porosity is considered. Some basic properties of plane harmonic waves are established and the boundary value problems (BVPs) of steady vibrations are investigated. Indeed on the basis of this theory three longitudinal and two transverse plane harmonic waves propagate through a Kelvin–Voigt material with double porosity and these waves are attenuated. The basic properties of the singular integral operators and potentials (surface and volume) are presented. The uniqueness and existence theorems for regular (classical) solutions of the BVPs of steady vibrations are proved by using the potential method (boundary integral equations method) and the theory of singular integral equations.
Czasopismo
Rocznik
Tom
Strony
441--458
Opis fizyczny
Bibliogr. 40 poz.
Twórcy
autor
- Faculty of Exact and Natural Sciences Tbilisi State University I. Chavchavadze Ave., 3 0179 Tbilisi, Georgia, maia.svanadze@gmail.com
Bibliografia
- 1. R. Lakes, Viscoelastic Materials. Cambridge University Press, Cambridge, 2009.
- 2. R.M. Christensen, Theory of Viscoelasticity, 2nd ed., Dover Publ. Inc. Mineola. New York, 2010.
- 3. H.F. Brinson, L.C. Brinson, Polymer Engineering Science and Viscoelasticity. Springer Science+Business Media, New York, 2015.
- 4. C. Truesdell, W. Noll, The Non-linear Field Theories of Mechanics. 3rd ed., Springer- Verlag, Berlin Haidelberg, New York, 2004.
- 5. G. Amendola, M. Fabrizio, J.M. Golden, Thermodynamics of Materials with Memory: Theory and Applications. Springer, New York, Dordrecht, Heidelberg, London, 2012.
- 6. A.C. Eringen, Mechanics of Continua, R. E. Krieger Publ. Com. Inc, Huntington, New York, 1980.
- 7. M. Fabrizio, A. Morro, Mathematical Problems in Linear Viscoelasticity. SIAM, Philadelphia, 1992.
- 8. M. Fabrizio, B. Lazzari, R. Nibbi, Asymptotic stability in linear viscoelasticity with supplies, J. Math. Anal. Appl., 427, 629–645, 2015.
- 9. S. De Cicco, L. Nappa, Singular surfaces in thermoviscoelastic materials with voids, J. Elasticity, 73, 191–210, 2003.
- 10. D. Iesan, On the theory of viscoelastic mixtures, J. Thermal Stresses, 27, 1125–1148, 2004.
- 11. D. Iesan, L. Nappa, On the theory of viscoelastic mixtures and stability, Math. Mech. Solids, 13, 55–80, 2008.
- 12. D. Iesan, A theory of thermoviscoelastic composites modelled as interacting Cosserat continua, J. Thermal Stresses, 30, 1269–1289, 2007.
- 13. D. Iesan, A. Scalia, On a theory of thermoviscoelastic mixtures, J. Thermal Stresses, 34, 228–243, 2011.
- 14. D. Iesan, R. Quintanilla, A theory of porous thermoviscoelastic mixtures, J. Thermal Stresses, 30, 693–714, 2007.
- 15. S. Chiriµˇa, C. Gales, A mixture theory for microstretch thermoviscoelastic solids, J. Thermal Stresses, 31, 1099–1124, 2008.
- 16. D. Iesan, On a theory of thermoviscoelastic materials with voids, J. Elasticity, 104, 369–384, 2011.
- 17. F. Passarella, V. Tibullo, V. Zampoli, On microstretch thermoviscoelastic composite materials, Europ. J. Mechanics, A/Solids, 37, 294–303, 2013.
- 18. M. Svanadze, On the theory of viscoelasticity for materials with double porosity, Discr. Contin. Dynam. Syst. B, 19, 2335–2352, 2014.
- 19. D. Iesan, First-strain gradient theory of thermoviscoelasticity, J. Thermal Stresses, 38, 701–715, 2015.
- 20. R. Quintanilla, Existence and exponential decay in the linear theory of viscoelastic mixtures, European J. Mech. A/Solids, 24, 311–324, 2005.
- 21. S. Chiriµˇa, M. Ciarletta, V. Tibullo, Rayleigh surface waves on a Kelvin–Voigt viscoelastic half-space, J. Elasticity, 115, 61–76, 2014.
- 22. S. Chiriµˇa, A. Danescu, Surface waves problem in a thermoviscoelastic porous half-space, Wave Motion, 4, 100–114, 2015.
- 23. S. Chiriµˇa, C. Gales, I. D. Ghiba, On spatial behavior of the harmonic vibrations in Kelvin–Voigt materials, J. Elasticity, 93, 81–92, 2008.
- 24. S. Chiriµˇa, V. Zampoli, On the forward and backward in time problems in the Kelvin-Voigt thermoviscoelastic materials, Mech. Res. Comm., 68, 25–30, 2015.
- 25. C. D’Apice, S. Chiriµˇa, Plane harmonic waves in the theory of thermoviscoelastic materials with voids, J. Thermal Stresses, 39, 142–155, 2016.
- 26. S. De Cicco, M. Svanadze, Fundamental solution in the theory of viscoelastic mixtures, J. Mech. Mater. Struc., 4, 139–156, 2009.
- 27. C. Gales, On spatial behavior in the theory of viscoelastic mixtures, J. Thermal Stresses, 30, 1–24, 2007.
- 28. C. Gales, On spatial behavior of the harmonic vibrations in thermoviscoelastic mixtures, J. Thermal Stresses, 32, 512–529, 2009.
- 29. C. Gales, On uniqueness and continuous dependence in nonlinear thermoviscoelasticity, J. Thermal Stresses, 34, 366–377, 2011.
- 30. F. Passarella, V. Zampoli, On the exponential decay for viscoelastic mixtures, Arch. Mech., 59, 97–117, 2007.
- 31. A. Bucur, On spatial behavior of the solution of a non-standard problem in linear thermoviscoelasticity with voids, Arch. Mechanics, 67, 311–330, 2015.
- 32. K. Sharma, P. Kumar, Propagation of plane waves and fundamental solution in thermoviscoelastic medium with voids, J. Thermal Stresses, 36, 94–111, 2013.
- 33. M.M. Svanadze, On the solutions of equations of the linear thermoviscoelasticity theory for Kelvin–Voigt materials with voids, J. Thermal Stresses, 37, 253–269, 2014.
- 34. S.K. Tomar, J. Bhagwan, H. Steeb, Time harmonic waves in a thermo-viscoelastic material with voids, J. Vibrat. Cont., 20, 1119–1136, 2013.
- 35. M.M. Svanadze, Potential method in the linear theory of viscoelastic materials with voids, J. Elasticity, 114, 101–126, 2014.
- 36. V.D. Kupradze, T.G. Gegelia, M.O. Basheleishvili, T.V. Burchuladze, Three- Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity. Amsterdam, New York, Oxford, North-Holland, 1979.
- 37. S.G. Mikhlin, Multidimensional Singular Integrals and Integral Equations. Pergamon Press, Oxford, 1965.
- 38. V.D. Kupradze, Potential Methods in the Theory of Elasticity. Jerusalem, Israel Program Sci. Transl., 1965.
- 39. T.V. Burchuladze, T.G. Gegelia, The Development of the Potential Methods in the Elasticity Theory. Metsniereba, Tbilisi, 1985.
- 40. T. Gegelia, L. Jentsch, Potential methods in continuum mechanics, Georgian Math. J., 1, 599–640,
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-23228218-8c0b-4cad-918b-7fe7f6838be8