Warianty tytułu
Języki publikacji
Abstrakty
The performance of RegCM4 for seasonal-scale simulation of winter circulation and associated precipitation over the Western Himalayas (WH) is examined. The model simulates the circulation features and precipitation in three distinct precipitation years reasonably well. It is found that the RMSE decreases and correlation coefficient increases in the precipitation simulations with the increase of model horizontal resolutions. The ETS and POD for the simulated precipitation also indicate that the performance of model is better at 30 km resolution than at 60 and 90 km resolutions. This improvement comes due to better representation of orography in the high-resolution model in which sharp orography gradient in the domain plays an important role in wintertime precipitation processes. A comparison of model-simulated precipitation with observed precipitation at 17 station locations has been carried out. Overall, the results suggest that 30 km model produced better skill in simulating the precipitation over the WH and this model is a useful tool for further regional downscaling studies.
Czasopismo
Rocznik
Tom
Strony
930--952
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
- Centre for Atmospheric Sciences, Indian Institute of Technology, Delhi, India, pushprajiitd@gmail.com
autor
- National Centre for Medium Range Weather Forecasting, Noida, India
autor
- School of Earth Ocean and Climate Sciences, Indian Institute of Technology, Bhubaneswar, India
autor
- Centre for Atmospheric Sciences, Indian Institute of Technology, Delhi, India
autor
- Centre for Atmospheric Sciences, Indian Institute of Technology, Delhi, India
autor
- Department of Meteorology, King Abdulaziz University, Jeddah, Saudi Arabia
autor
- Research and Development Centre, Snow and Avalanche Study Establishment, Chandigarh, India
Bibliografia
- 1.Azadi, M., U.C. Mohanty, O.P. Madan, and B. Padmanabhamurty (2002), Prediction of precipitation associated with western disturbances using a highresolution regional model: role of parameterization of physical processes, Meteorol. Appl. 9, 3, 317-326, DOI: 10.1017/S1350482702003055.
- 2.Dickinson, R.E., P.J. Kennedy, and A. Henderson-Sellers (1993), Biosphereatmosphere transfer scheme (BATS) version 1e as coupled to the NCAR community climate model, Tech. Note NCAR/TN-387+STR, National Center for Atmospheric Research, Boulder, USA, 72 pp.
- 3.Dimri, A.P. (2004), Impact of horizontal model resolution and orography on the simulation of a western disturbance and its associated precipitation, Meteorol. Appl. 11, 2, 115-127, DOI: 10.1017/S1350482704001227.
- 4.Dimri, A.P. (2006), Surface and upper air fields during extreme winter precipitation over the Western Himalayas, Pure Appl. Geophys. 163, 8, 1679-1698, DOI:10.1007/s00024-006-0092-4.
- 5.Dimri, A.P., and A. Ganju (2007), Wintertime seasonal scale simulation over Western Himalaya using RegCM3, Pure Appl. Geophys. 164, 8-9, 1733-1746, DOI: 10.1007/s00024-007-0239-y.
- 6.Fritsch, J.M., and C.F. Chappell (1980), Numerical prediction of convectively driven mesoscale pressure systems. Part 1: Convective parameterization, J. Atmos. Sci. 37, 8, 1722-1733, DOI: 10.1175/1520-0469(1980)037<1722:NPOCDM>2.0.CO;2.
- 7.Gilbert, G.K. (1884), Finley’s tornado predictions, Am. Meteorol. J. 1, 166-172. Giorgi, F., and G.T. Bates (1989), The climatological skill of a regional model over complex terrain, Mon. Wea. Rev. 117, 11, 2325-2347, DOI: 10.1175/1520-0493(1989)117<2325:TCSOAR>2.0.CO;2.
- 8.Grell, G.A. (1993), Prognostic evaluation of assumptions used by cumulus parameterizations, Mon. Wea. Rev. 121, 3, 764-787, DOI: 10.1175/1520-0493 (1993)121<0764:PEOAUB>2.0.CO;2.
- 9.Grell, G.A., J. Dudhia, and D.R. Stauffer (1994), A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5), Tech. Note NCAR/TN-398+STR, National Center for Atmospheric Research, Boulder, USA, 121 pp.
- 10.Gupta, A., L.S. Rathore, S.V. Singh, and N. Mendiratta (1999), Performance of a global circulation model in predicting the winter systems and associated precipitation over North-West India during 1994-97. In: S.K. Dash and J. Bahadur (eds.), The Himalayan Environment, New Age Int. Publ., New Delhi, 123-138.
- 11.Hatwar, H.R., B.P. Yadav, and Y.V. Rama Rao (2005), Prediction of western disturbances and associated weather over Western Himalayas, Curr. Sci. India 88, 6, 913-920.
- 12.Holtslag, A.A.M., E.I.F. De Bruijn, and H.-L. Pan (1990), A high resolution air mass transformation model for short-range weather forecasting, Mon. Wea. Rev. 118, 8, 1561-1575, DOI: 10.1175/1520-0493(1990)118<1561:AHRAMT>2.0.CO;2.
- 13.Jarraud, M., A.J. Simmons, and M. Kanamitsu (1988), Sensitivity of medium-range weather forecasts to the use of an envelope orography, Q. J. Roy. Meteor. Soc. 114, 482, 989-1025, DOI: 10.1002/qj.49711448208.
- 14.Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J.J. Hnilo, M. Fiorino, and G.L. Potter (2002), NCEP-DOE AMIP-II reanalysis (R-2), Bull. Am. Meteorol. Soc. 83, 11, 1631-1643, DOI: 10.1175/BAMS-83-11-1631.
- 15.Kar, S.C., and S. Rana (2014), Interannual variability of winter precipitation over northwest India and adjoining region: impact of global forcings, Theor. Appl. Climatol. 116, 3-4, 609-623, DOI: 10.1007/s00704-013-0968-z.
- 16.Kiehl, J.T., J.J. Hack, G.B. Bonan, B.A. Boville, B.P. Briegleb, D.L. Williamson, and P.J. Rasch (1996), Description of the NCAR Community Climate Model (CCM3), Tech. Note NCAR/TN-420+STR, National Center for Atmospheric Research, Boulder, USA, 152 pp.
- 17.Mohanty, U.C., O.P. Madan, P.V.S. Raju, R. Bhatla, and P.L.S. Rao (1999), A study on certain dynamic and thermodynamic aspects associated with Western Disturbances over north-west Himalaya. In: S.K. Dash and J. Bahadur (eds.), The Himalayan Environment, New Age Int. Publ., New Delhi, 113-122.
- 18.Pal, J.S., F. Giorgi, X. Bi, N. Elguindi, F. Solmon, S.A. Raucher, X. Gao, R. Francisco, A. Zakey, J. Winter, M. Ashfaq, F.S. Syed, L.C. Sloan, J.L. Bell, N.S. Diffenbaugh, J. Karmacharya, A. Konaré, D. Martinez, R.P. da Rocha, and A.L. Steiner (2007), Regional climate modeling for the developing world: The ICTP RegCM3 and RegCNET, Bull. Amer. Meteor. Soc. 88, 9, 1395-1409, DOI: 10.1175/BAMS-88-9-1395.
- 19.Rajeevan, M., J. Bhate, J.D. Kale, and B. Lal (2006), High resolution daily gridded rainfall data for the Indian region: Analysis of break and active monsoon spells, Curr. Sci. India 91, 3, 296-306.
- 20.Singh, M.S., A.V.R.K. Rao, and S.C. Gupta (1981), Development and movement of a mid tropospheric cyclone in the westerlies over India, Mausam 32, 1, 45-50.
- 21.Sinha, P., U.C. Mohanty, S.C. Kar, and S. Kumari (2013), Role of the Himalayan orography in simulation of the Indian summer monsoon using RegCM3, Pure Appl. Geophys., DOI: 10.1007/s00024-013-0675-9.
- 22.Wilks, D.S. (1995), Statistical Methods in the Atmospheric Sciences, Academic Press, San Diego, 467 pp.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-22d44566-fd16-4dad-b9fa-d890b54da8a0