Warianty tytułu
Języki publikacji
Abstrakty
In recent years, ready-mix concrete plants have increasingly utilized premixed blended hydraulic cement. These formulations incorporate a higher mineral admixture content than traditional ternary concrete mixtures, resulting in improved durability, compactness, and reduced hydration heat during curing. This study examined four concrete proportions with a water–binder ratio of 0.32, focusing on workability, compression strength, and chloride penetration resistance. The research also considered economic effects and carbon emissions. The findings revealed that premixed blended hydraulic cement improved late strength development and reduced chloride permeability. Additionally, the partial replacement of cement with silica fume enhanced early strength and chloride resistance. However, these benefits came with trade-offs, including adverse effects on workability and increased hydration heat. Notably, a 50% cement mixture in premixed blended hydraulic cement emitted 42–49% less CO2 than conventional formulations, highlighting its potential for reducing environmental impact in concrete production.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
139--159
Opis fizyczny
Bibliogr. 49 poz., rys., tab.
Twórcy
autor
- Department of Environmental Engineering, National Ilan University Yilan, Taiwan
autor
- Department of Civil Engineering, National Ilan University Yilan, Taiwan, wtlin@niu.edu.tw
autor
- Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague Prague, Czech Republic
autor
- Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague Prague, Czech Repub
autor
- Department of Materials Science and Engineering, National Dong Hwa University Hualien, Taiwan
autor
- Department of Materials Science and Engineering, National Dong Hwa University Hualien, Taiwan
Bibliografia
- [1] Chaudhury, R., Sharma, U., Thapliyal, P.C., Singh, L.P., Low-CO2 emission strategies to achieve net zero target in cement sector, J. Clean. Prod., 2023, 417: 137466, 10.1016/j.jclepro.2023.137466
- [2] Amran, M., Makul, N., Fediuk, R., Lee, Y.H., Vatin, N.I., Lee, Y.Y., et al., Case study on MOC composites enriched by foamed glass and ground glass waste: experimental assessment of material properties and performance, Case Stud. Constr. Mater., 2022, 17: e01439, 10.1016/j.cscm.2023.e01836
- [3] Lehne, J., Preston, F. Making concrete change: innovation in low-carbon cement and concrete, Chatham House, UK, 2018. Retrieved from https://policycommons.net/artifacts/1423241/making-concrete-change/2037504/ on 9 Nov 2023. CID: 20.500.12592/6hw862
- [4] Dávila, J.G., Sacchi, R., Pizzol, M., Preconditions for achieving carbon neutrality in cement production through CCUS, J. Clean. Prod., 2023, 425: 138935, 10.1016/j.jclepro.2023.138935
- [5] Kuoribo, E., Shokry, H., Hassanin, A.H., Asawa, T., Mahmoud, H., Optimizing concrete performance: an investigation into the impact of supplementary cementitious materials and sand particle sizes, Mater. Lett., 2023, 347: 134593, 10.1016/j.matlet.2023.134593
- [6] Knight, K.A., Cunningham, P.R., Miller, S.A., Optimizing supplementary cementitious material replacement to minimize the environmental impacts of concrete, Cem. Concr. Compos., 2023, 139: 105049, 10.1016/j.cemconcomp.2023.105049
- [7] Liu, J.C., Hossain, M.U., Xuan, D., Ali, H.A., Ng, S.T., Ye, H., Mechanical and durability performance of sustainable concretes containing conventional and emerging supplementary cementitious materials, Built Environ., 2023, 15: 100197, 10.1016/j.dibe.2023.100197
- [8] Zong, H., Wang, Y., Wang, G., Li, Q., Li, F., Li, Q., et al., The role of ultra-fine supplementary cementitious materials in the durability and microstructure of airport pavement concrete, Constr. Build. Mater., 2023, 392: 131954, 10.1016/j.conbuildmat.2023.131954
- [9] Gao, S., Guo, X., Ban, S., Ma, Y., Yu, Q., Sui, S., Influence of supplementary cementitious materials on ITZ characteristics of recycled concrete, Constr. Build. Mater., 2023, 363: 129736, 10.1016/j.conbuildmat.2022.129736
- [10] Snellings, R., Suraneni, P., Skibsted, J., Future and emerging supplementary cementitious materials, Cem. Concr. Res., 2023, 171: 107199, 10.1016/j.cemconres.2023.107199
- [11] Park, K.B., Plawsky, J.L., Littman, H., Paccione, J.D., Mortar properties obtained by dry premixing of cementitious materials and sand in a spout-fluid bed mixer, Cem. Concr. Res., 2006, 36(4): 728–734, 10.1016/j.cemconres.2005.10.012
- [12] Segura, J., Aponte, D., Pelà, L., Roca, P., Influence of recycled limestone filler additions on the mechanical behaviour of commercial premixed hydraulic lime based mortars, Constr. Build. Mater., 2020, 238: 117722, 10.1016/j.conbuildmat.2019.117722
- [13] Faria, P., Silva, V., Natural hydraulic lime mortars: influence of the aggregates, J.J. Hughes, J.Válek, C.J.W.P. Groot, (Eds.), Historic mortars, Springer International, Cham, Switzerland, 2019, pp. 185–199
- [14] Lopez-Arce, P., Tagnit-Hammou, M., Menendez, B., Mertz, J.D., Guiavarc’h, M., Kaci, A., et al., Physico-chemical stone-mortar compatibility of commercial stone-repair mortars of historic buildings from Paris, Constr. Build. Mater., 2016, 124: 424–441, 10.1016/j.conbuildmat.2016.07.076
- [15] Wu, J., Wong, H.S., Zhang, H., Yin, Q., Jing, H., Ma, D., Improvement of cemented rockfill by premixing low-alkalinity activator and fly ash for recycling gangue and partially replacing cement, Cem. Concr. Compos., 2024, 145: 105345, 10.1016/j.cemconcomp.2023.105345
- [16] CNS 15286 A2290, Blended hydraulic cements, Chinese National Standards, Taiwan, 2014
- [17] Kurda, R., de Brito, J., Silvestre, J.D., Influence of recycled aggregates and high contents of fly ash on concrete fresh properties, Cem. Concr. Compos., 2017, 84: 198–213, 10.1016/j.cemconcomp.2017.09.009
- [18] Lin, W.T., Development of cementless binder for low thermal conductivity materials: Reactive ultra-fine fly ash mixed with co-fired fly ash, Mater. Today Commun., 2020, 25: 101466, 10.1016/j.cscm.2022.e00899
- [19] Sua-iam, G., Chatveera, B., A study on workability and mechanical properties of eco-sustainable self-compacting concrete incorporating PCB waste and fly ash, J. Clean. Prod., 2021, 329: 129523, 10.1016/j.jclepro.2021.129523
- [20] Ayeni, O., Onwualu, A.P., Boakye, E., Characterization and mechanical performance of metakaolin-based geopolymer for sustainable building applications, Constr. Build. Mater., 2020, 272: 121938, 10.1016/j.conbuildmat.2020.121938
- [21] Jain, B., Sancheti, G., Influence of silica fume and iron dust on mechanical properties of concrete, Constr. Build. Mater., 2023, 409: 133910, 10.1016/j.conbuildmat.2023.133910
- [22] Çelik, Aİ, Özkılıç, Y.O., Bahrami, A., Hakeem, I.Y., Mechanical performance of geopolymer concrete with micro silica fume and waste steel lathe scraps, Case Stud. Constr. Mater., 2023, 19: e02548, 10.1016/j.cscm.2023.e02548
- [23] Shao, R., Wu, C., Li, J., A comprehensive review on dry concrete: application, raw material, preparation, mechanical, smart and durability performance, J. Build. Eng., 2022, 55: 104676, 10.1016/j.jobe.2022.104676
- [24] Widoanindyawati, V., Pratama, M.M.A., The influence of compression applied during production to the compression strength of dry concrete: an experimental study, Procedia Eng., 2014, 95: 465–472, 10.1016/j.proeng.2014.12.206
- [25] Wang, L., Wang, J., Wang, H., Qian, X., Fang, Y., Ge, Y., et al., Ascorbic acid: a green admixture for eco-efficient metakaolin blended cement with enhanced properties and corrosion resistance, Cem. Concr. Compos., 2024, 146: 105405, 10.1016/j.cemconcomp.2023.105405
- [26] Medjigbodo, G., Rozière, E., Charrier, K., Izoret, L., Loukili, A., Hydration, shrinkage, and durability of ternary binders containing Portland cement, limestone filler and metakaolin, Constr. Build. Mater., 2018, 183: 114–126, 10.1016/j.conbuildmat.2018.06.138
- [27] Shilar, F.A., Ganachari, S.V., Patil, V.B., Advancement of nano-based construction materials-a review, Constr. Build. Mater., 2022, 359: 129535, 10.1016/j.conbuildmat.2022.129535
- [28] Liu, G., Zhao, H., Amin, M.N., Zaman, A., Hassan, A.M., Ali, M., et al., Strength predictive models of cementitious matrix by hybrid intrusion of nano and micro silica: hyper-tuning with ensemble approaches, J. Mater. Res. Technol., 2023, 26: 1808–1832, 10.1016/j.jmrt.2023.07.222
- [29] Radwan, M.K.H., Onn, C.C., Mo, K.H., Yap, S.P., Chin, R.J., Lai, S.H., Sustainable ternary cement blends with high-volume ground granulated blast furnace slag–fly ash, Environ. Dev. Sustain., 2022, 24: 4751–4785, 10.1007/s10668-021-01633-4
- [30] Rao, B.K., Reddy, M.A.K., Rao, A.V., Effect of flyash as cement replacement material and pore filling material in concrete, Mater. Today Proc., 2022, 52: 1775–1780, 10.1016/j.matpr.2021.11.444
- [31] Gettu, R., Pillai, R.G., Santhanam, M., Basavaraj, A.S., Rathnarajan, S., Dhanya, B.S., Sustainability-based decision support framework for choosing concrete mixture proportions, Mater. Struct., 2018, 51: 1–16, 10.1617/s11527-018-1291-z
- [32] Zheng, Q., Li, C., Song, F., He, B., Li, W., Jiang, Z., Autogenous self-healing of ultra-high-performance fiber-reinforced concrete with varying silica fume dosages: Secondary hydration and structural regeneration, Cement Concr. Compos., 2023, 137: 104905, 10.1016/j.cemconcomp.2022.104905
- [33] Yeung, J.S.K., Yam, M.C.H., Wong, Y.L., 1-year development trend of concrete compressive strength using Calcium Sulfoaluminate cement blended with OPC, PFA and GGBS, Constr. Build. Mater., 2019, 198: 527–536, 10.1016/j.conbuildmat.2018.11.182
- [34] Pontes, J., Real, S., Bogas, J.A., The rapid chloride migration test as a method to determine the chloride penetration resistance of concrete in marine environment, Constr. Build. Mater., 2023, 404: 133281, 10.1016/j.conbuildmat.2023.133281
- [35] Hasan, T.M., Allena, S., Gilbert, L., Rapid chloride penetration test: an evaluation of corrosion resistance in ultra-high performance concrete, J. Build. Eng., 2023, 82: 108317, 10.1016/j.jobe.2023.108317
- [36] Kazemi, R., Gholampour, A., Evaluating the rapid chloride permeability of self-compacting concrete containing fly ash and silica fume exposed to different temperatures: An artificial intelligence framework, Constr. Build. Mater., 2023, 409: 133835, 10.1016/j.conbuildmat.2023.133835
- [37] Hanein, T., Thienel, K.C., Zunino, F., Marsh, A.T.M., Maier, M., Wang, B., et al., Clay calcination technology: state-of-the-art review by the RILEM TC 282-CCL, Mater. Struct., 2022, 55: 3, 10.1617/s11527-021-01807-6
- [38] Sun, J., Chen, Z., Influences of limestone powder on the resistance of concretes to the chloride ion penetration and sulfate attack, Powder Technol., 2018, 338: 725–733, 10.1016/j.powtec.2018.07.041
- [39] Kumar, S., Rai, B., Biswas, R., Samui, P., Kim, D., Prediction of rapid chloride permeability of self-compacting concrete using multivariate adaptive regression spline and minimax probability machine regression, J. Build. Eng., 2020, 32: 101490, 10.1016/j.jobe.2020.101490
- [40] Li, Z., Bian, Y., Zhao, J., Wang, Y., Yuan, Z., Recycled concrete fine powder (RFP) as cement partial replacement: Influences on the physical properties, hydration characteristics, and microstructure of blended cement, J. Build. Eng., 2022, 62: 105326, 10.1016/j.jobe.2022.105326
- [41] Bogas, J.A., Real, S., Carriço, A., Abrantes, J.C.C., Guedes, M., Hydration and phase development of recycled cement, Cement Concr. Compos., 2022, 137: 104405, 10.1016/j.cemconcomp.2022.104405
- [42] Sun, D., Wang, X., Wang, J., Li, J., Mao, Y., Hu, Z., et al., Properties and hydration characteristics of cementitious blends with two kinds of solid waste-based sulfoaluminate cement, Constr. Build. Mater., 2024, 411: 134482, 10.1016/j.conbuildmat.2023.134482
- [43] Chen, J., Zhou, L., Zhu, Z., Ma, L., High-ductility basalt fiber reinforced cement composite with low CO2 emission by interface property transformation: Hydrogen bond transformed into covalent bond, J. Build. Eng., 2024, 82: 108231, 10.1016/j.jobe.2023.108231
- [44] Shumuye, E.D., Mehrpay, S., Fang, G., Li, W., Wang, Z., Uge, B.U., et al., Influence of novel hybrid nanoparticles as a function of admixture on responses of engineered geopolymer composites: A review, J. Build. Eng., 2024, 86: 108782, 10.1016/j.jobe.2024.108782
- [45] Shumuye, E.D., Liu, C., Fang, G., Mehrpay, S., Utilization of photocatalytic degradation and efficiency of engineered geopolymer composite tile doped with nano-particles under ultraviolet light, Cement Concr. Compos., 2024, 153: 105729, 10.1016/j.cemconcomp.2024.105729
- [46] Singh, A., Mehta, P.K., Kumar, R., Performance of binary admixtures (Fly Ash and Silica Fume) on self compacting concrete, Mater. Today Proc., 2022, 58: 970–977, 10.1016/j.matpr.2022.02.489
- [47] Lin, K.L., Lin, W.T., Chen, S.C., Sprince, A., Study on the cementation and engineering properties of ternary eco-binder mortar containing pulverized coal fly ash mixed with circulating fluidized bed co-fired fly ash, J. CO2 Util., 2024, 83: 102787, 10.1016/j.jcou.2024.102787
- [48] Fakhri, R.S., Dawood, E.T., Limestone powder, calcined clay and slag as quaternary blended cement used for green concrete production, J. Build. Eng., 2023, 79: 107644, 10.1016/j.jobe.2023.107644
- [49] Kaplan, G., Bayraktar, O.Y., Li, Z., Bodur, B., Yılmazoglu, M.U., Alcan, B.A., Improving the eco-efficiency of fiber reinforced composite by ultra-low cement content/high FA-GBFS addition for structural applications: Minimization of cost, CO2 emissions and embodied energy, J. Build. Eng., 2023, 76: 107280, 10.1016/j.jobe.2023.107280
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-22b070df-8078-4475-9d5c-1552ddd22345