Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | Vol. 48, nr 4 | 620--636
Tytuł artykułu

One-sided quantum quasigroups and loops

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Konferencja
Proceedings of the AAA88 - 88th Workshop on General Algebra Editors for the Special Issue: Anna Romanowska, Jonathan D. H. Smith
Języki publikacji
EN
Abstrakty
EN
Quantum quasigroups and quantum loops are self-dual objects providing a general framework for the nonassociative extension of quantum group techniques. This paper examines their one-sided analogues, which are not self-dual. Just as quantum quasigroups are the “quantum” version of quasigroups, so one-sided quantum quasigroups are the “quantum” version of left or right quasigroups.
Wydawca

Rocznik
Strony
620--636
Opis fizyczny
Bibliogr. 14 poz., rys.
Twórcy
Bibliografia
  • [1] G. Benkart, S. Madaraga, J. M. Pérez-Izquierdo, Hopf algebras with triality, Trans. Amer. Math. Soc. 365 (2012), 1001–1023.
  • [2] B. A. Davey, G. Davis, Tensor products and entropic varieties, Algebra Universalis 21 (1985), 68–88.
  • [3] J. A. Green, W. D. Nichols, E. J. Taft, Left Hopf algebras, J. Algebra 65 (1980), 399–411.
  • [4] J. Klim, S. Majid, Hopf quasigroups and the algebraic 7-sphere, J. Algebra 323 (2010), 3067–3110.
  • [5] S. Majid, A Quantum Groups Primer, Cambridge University Press, Cambridge, 2002.
  • [6] W. D. Nichols, E. J. Taft, The left antipodes of a left Hopf algebra, pp. 363–368 in Algebraists’ Homage, (S. A. Amitsur, D. J. Saltman and G. B. Seligman, eds.), Contemporary Mathematics 13, Amer. Math. Soc., Providence, RI, 1982.
  • [7] J. M. Pérez-Izquierdo, Algebras, hyperalgebras, nonassociative bialgebras and loops, Adv. Math. 208 (2007), 834–876.
  • [8] D. E. Radford, Hopf Algebras, World Scientific, Singapore, 2012.
  • [9] S. Rodríguez-Romo, E. J. Taft, A left quantum group, J. Algebra 286 (2005), 154–160.
  • [10] A. B. Romanowska, J. D. H. Smith, Entropic Hopf algebras, pp. 187–190 in TACL 2013. Sixth International Conference on Topology, Algebra and Categories in Logic, (N. Galatos, A. Kurz, C. Tsinakis, eds.), Easychair Proceedings in Computing 25, 2014. http://www.easychair.org/publications/?page=1060988868.
  • [11] J. D. H. Smith, An Introduction to Quasigroups and Their Representations, Chapman and Hall/CRC, Boca Raton, FL, 2007.
  • [12] J. D. H. Smith, Quantum quasigroups and loops, preprint, 2014.
  • [13] J. D. H. Smith, A. B. Romanowska, Post-Modern Algebra, Wiley, New York, NY, 1999.
  • [14] R. Street, Quantum Groups, Cambridge University Press, Cambridge, 2007.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-225ab277-7fc7-49d4-a10f-a337d421f34b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.