Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 18, no 2 | 266--283
Tytuł artykułu

Shaping the Topography of the Active Surface of a Ceramic Grinding Wheel with a Stationary Multi-Point Diamond Dresser

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents issues related to shaping the topography of the grinding wheel as a result of the impact of a stationary multipoint diamond dresser. The result of the dressing process with diamond multipoint dressers is influenced by the dressing feed, the effective width of the individual diamonds and the distance between the diamonds measured along the dressing feed direction. The paper presents simulation results the influence of these parameters on the multiplicity of contact between generatrix of the flat grinding wheel type 1 and the dressing diamonds. The results of the simulation showed that, depending on these parameters, areas with no contact with diamonds and areas with different multiplicity of contact may form on the surface of the grinding wheel. This means that the active surface roughness of the grinding wheel may not be uniform. Two indexes were proposed to enable supervision of the dressing process using stationary multi-point dressers. The first index (k1) characterizes the average multiplicity of contact between the diamonds and the grinding wheel along its generatrix, and the second (k2) the possibility of forming a spiral ridge on the grinding wheel surface due to the lack of contact between this part of the grinding wheel and the diamonds. The work analyzes the changes in the indexes values as a function of the dressing feed rate and the active width of diamonds for two basic types of diamond distribution on the working surface of the dresser, i.e. uniform and irregular spacing. The study presented the results of evaluating the topography of the flat aluminum oxide vitrified grinding wheel type 1 subjected to dressing with various values of indices k1 and k2. The assessment was carried out on the basis two-sample Kolmogorov-Smirnov test and statistical analysis of parameters for evaluating the microgeometry of the grinding wheel circumferential profile, i.e. the depth of active cutting edges and the undeformed chips thickness. The analysis confirmed the lack of homogeneity of the surface topography of the grinding wheel formed with a stationary multipoint dresser and the purposefulness of using the k1 and k2 indexes.
Wydawca

Rocznik
Strony
266--283
Opis fizyczny
Bibliogr. 28 poz., fig., tab.
Twórcy
  • Institute of Machine Tools and Production Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, ryszard.debkowski@p.lodz.pl
  • Institute of Machine Tools and Production Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, marcin.golabczak@p.lodz.pl
Bibliografia
  • 1. Tawakoli T., Abdolreza Rasifard A. Dressing of Grinding Wheels. In Machining with Abrasives, Jackson, M.J., Davim, J.P., Eds.; Publisher: Springer Science+Business Media 2011. 181–243. doi.org/10.1007/978-1-4419-7302-3_4
  • 2. WINTER diamond tools for dressing grinding wheels, Catalogue No. 5
  • 3. Wegener K., Hoffmeister H.W., Karpuschewski B. Kuster F., Hahmann W.C., Rabiey M. Conditioning and monitoring of grinding wheels. CIRP Annals - Manufacturing Technology. 2011; 60: 757–777. doi:10.1016/j.cirp.2011.05.003
  • 4. Brinksmeier E., Cinar M. Characterisation of dressing processes by determination of collision number of the abrasive grits. Ann. CIRP. 1995; 1: 299–304.
  • 5. Azizi A., Rahimi A., Rezaei S.M., Baseri H. Modeling of dressing forces during rotary diamond cup dressing of vitrified CBN grinding wheels. Mach. Sci. Technol. 2009; 13: 407–426. doi.org/10.1080/10910340903237822
  • 6. Linke B. Dressing process model for vitrified bonded grinding wheels. CIRP Ann. - Manuf. Technol. 2008; 57: 345–348. doi.org/10.1016/j.cirp.2008.03.083
  • 7. Palmer J., Ghadbeigi H., Novovic D., Curtis D. An experimental study of the effects of dressing parameters on the topography of grinding wheels during roller dressing. J. Manuf. Process. 2018; 31: 348–355. doi.org/10.1016/j.jmapro.2017.11.025.
  • 8. Aleksandrova I. Optimization of the Dressing Parameters in Cylindrical Grinding Based on a Generalized Utility Function. Chinese Journal of Mechanical Engineering 2016; 29: 63–73. doi.org/ 10.3901/CJME.2015.1103.130.
  • 9. Urbaniak M. Cutting properties evaluation system of vitrified grinding wheels. Scientific Bulletin of Lodz Technical University. 2002; 913.
  • 10. König W., Messer J. Beeinflussung von Topographie und Prozessverhalten keramisch gebundener Schleifscheiben durch die Abrichtbedigungen. Industrie Diamanten Rundschau 1981, 2.
  • 11. Blunt L., Ebdon S. The application of three-dimensional surface measurement techniques to characterizing grinding wheel topography. Int. J. Machine Tools Manuf. 1996; 36(11): 1207–1226. doi.org/10.1016/0890-6955(96)00041-7.
  • 12. Torrance A.A., Badger J.A. The relation between the traverse dressing of vitrified grinding wheels and their performance. Int. J. of Machine Tools & Manufacture. 2000; 40: 1787–1811. doi.org/10.1016/S0890-6955(00)00015-8.
  • 13. Verkerk J. Final report concerning CIRP cooperative work on the characterization of grinding wheel topography. Ann. CIRP. 1977; 26(2): 385–395.
  • 14. Li M., Ding W., Li B., Xu J. Morphological evolution and grinding performance of vitrified bonded microcrystal alumina abrasive wheel dressed with a single-grit diamond. Ceramics International. 2019; 45: 19669–19678. doi.org/10.1016/j.ceramint.2019.06.216.
  • 15. Haoyang Cao, Xun Chen, Haolin Li: Dressing strategy and grinding control for cylindrical microstructural surface. The International Journal of Advanced Manufacturing Technology. 2018; 99: 707–727.
  • 16. Sheiko M.N., Maksimenko A.P. Dressing with Diamond Sticks from the Standpoint of MechanicalStatistical Concepts of Diamond Abrasive Machining. Steady-State Actual Infeed in the Multiple-Pass Mode. Journal of Superhard Materials. 2008; 30(4): 282–286.
  • 17. Cai R., Rowe W.B., Morgan M.N., Mills B. Measurement of vitrified CBN grinding wheel topography. Key Eng. Mater. 2003; 238–239: 301–306.
  • 18. Boaron A., Weingaertner W.L. Dynamic in-process characterization method based on acoustic emission for topographic assessment of conventional grinding wheels. Wear. 2018; 406–407: 218–229.
  • 19. König W., Lortz W. Properties of cutting edges related to chip formation in grinding. Annals of the CIRP 1975; 24(1): 231–235.
  • 20. Butler D.L., Blunt L.A., See B.K., Webster J.A., Stout K.J. The characterisation of grinding wheels using 3D surface measurement techniques. J. Mater. Process. Technol. 2002: 127(2): 234–237.
  • 21. Nguyen A.T., Butler D.L. Correlation of grinding wheel topography and grinding performance: a study from a viewpoint of three dimensional surface characterization. J. Mater. Process Technol. 2008; 208: 14–23.
  • 22. Kapłonek W., Nadolny K., Królczyk G.M. The use of focus-variation microscopy for the assessment of active surfaces of a new generation of coated abrasive tools. Measurement Science Review. 2016; 16: 42–53.
  • 23. Huang H. Effects of truing/dressing intensity on truing/dressing efficiency and grinding performance of vitrified diamond wheels. J. Mater. Process. Technol. 2001; 117: 9–14.
  • 24. Zhang Y.Z., Fang C.F., Huang G.Q., Xu X.P. Modeling and simulation of the distribution of undeformed chip thicknesses in surface grinding. Int. J. Mach. Tools Manuf. 2018; 127: 14–27. doi.org/10.1016/j.ijmachtools.2018.01.002.
  • 25. Lefebvre A., Sinot O., Torrance A. Optimization of dressing conditions for a resin-bonded diamond wheel by topography analysis. Machining Science and Technology. 2013; 17: 312–324.
  • 26. Chen J., Cui C., Huang G., Huang H., Xu X. A new strategy for measuring the grain height uniformity of a grinding wheel. Measurement. 2020; 151: 107250. doi.org/10.1016/j.measurement.2019.107250.
  • 27. Kim S.H., Ahn J.H. Decision of dressing interval and depth by the direct measurement of the grinding wheel surface. J. Mater. Process. Technol. 1999; 88: 190–194.
  • 28. Klocke F. Zerspanung mit geometrisch unbestimmter Schneide. Vorlesung. Werkzeugmaschinenlabor WZL der RWTH Aachen. 2008; 54, 64.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-224fb4a1-8f32-449f-a9e8-59c7aa5b4c6f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.