Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 55, nr 1 | 798--811
Tytuł artykułu

Mannheim curves and their partner curves in Minkowski 3-space E13

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The modified orthogonal frame is an important tool to study analytic space curves whose curvatures have discrete zero points. In this article, by using the modified orthogonal frame, Mannheim curves and their partner curves are investigated in Minkowski 3-space. Some characterizations according to the curvatures and torsions of the curves are given. Finally, some relations under the conditions for Mannheim curves and their partner curves to be generalized helices are presented. All the possible cases for the partner curves to be spacelike and timelike are considered in the whole of the article.
Wydawca

Rocznik
Strony
798--811
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
Bibliografia
  • [1] M. Do Carmo, Differential Geometry of Curves and Surfaces, Prentice-Hall, New Jersey, 1976.
  • [2] A. Yildirim and K. A. Y. A. Feryat, Bertrand partner curves according to Darboux frame in the Euclidean 3-space E3, J. Univ. Math. 3 (2020), no. 1, 53–58.
  • [3] M. S. Lone, H. Es, M. K. Karacan, and B. Bukcu, On some curves with Modified orthogonal frame in Euclidean 3-space, Iran. J. Sci. Technol. Trans. A Sci. 43 (2019), no. 4, 1905–1916.
  • [4] H. B. Öztekin and M. Bektas, Representation formulae for Bertrand curves in the Minkowski 3-space, Sci. Magna. 6 (2010), no. 1, 89–96.
  • [5] H. Liu and F. Wang, Mannheim partner curves in 3-space, J. Geom. 88 (2008), no. 1, 120–126.
  • [6] F. Wang and H. Liu, Mannheim partner curves in 3-Euclidean space, Math. Practice Theory 37 (2007), 141–143.
  • [7] K. Orbay and E. Kasap, On Mannheim partner curves in E3, Int. J. Phys. Sci. 4 (2009), no. 5, 261–264.
  • [8] T. Kahraman, M. Önder, M. Kazaz, and H. H. Uğurlu, Some characterizations of Mannheim partner curves in the Minkowski 3-space E1 3, Proc. Est. Acad. Sci. 60 (2011), 210–220.
  • [9] T. Sasai, The fundamental theorem of analytic space curves and apparent singularities of Fuchsian differential equations, Tohoku Math. J (2). 36 (1984), no. 1, 17–24.
  • [10] B. Bükcü and M. K. Karacan, Spherical curves with modified orthogonal frame, J. New Res. Sci. 5 (2016), no. 10, 60–68.
  • [11] M. S. Lone, H. Es, M. K. Karacan, and B. Bükcü, Mannheim curves with modified orthogonal frame in Euclidean 3-space, Turk. J. Math. 43 (2019), 648–663.
  • [12] B. Bükcü and M. K. Karacan, On the modified orthogonal frame with curvature and torsion in 3-space, Math. Sci. Appl. E-Notes 4 (2016), no. 1, 184–188.
  • [13] H. K. Elsayied, A. A. Altaha, and A. Elsharkawy, On some special curves according to the modified orthogonal frame in Minkowski 3- space E1 3, Kasmera 49 (2021), no. 1, 2–15.
  • [14] H. K. Elsayied, A. A. Altaha, and A. Elsharkawy, Bertrand curves with the modified orthogonal frame in Minkowski 3- space E1 3, Rev. Edu. 392 (2022), no. 6, 43–55.
  • [15] A. M. Elshenhab, O. Moaaz, I. Dassios, and A. Elsharkawy, Motion along a space curve with a quasi-frame in Euclidean 3-space: Acceleration and Jerk, Symmetry 14 (2022), no. 8, 1610, DOI: https://doi.org/10.3390/sym14081610.
  • [16] A. Elsharkawy, C. Cesarano, A. Tawfiq, and A. Aziz Ismail, The non-linear Schrödinger equation associated with the soliton surfaces in Minkowski 3-space, AIMS Math. 7 (2022), no. 10, 17879–17893.
  • [17] E. Hamouda, O. Moaaz, C. Cesarano, S. S. Askar, and A. Elsharkawy, Geometry of solutions of the Quasi-Vortex filament equation in Euclidean 3-space E3, Mathematics 10 (2022), no. 6, 891, DOI: https://doi.org/10.3390/math10060891.
  • [18] H. K. Elsayied, A. M. Tawfiq, and A. Elsharkawy, Special Smarandach curves according to the quasi frame in 4-dimensional Euclidean space E4, Houston J. Math, 74 (2021), no. 2, 467–482.
  • [19] E. Hamouda, C. Cesarano, S. S. Askar, and A. Elsharkawy, Resolutions of the jerk and snap vectors for a quasi curve in Euclidean 3-space, Mathematics 9 (2021), no. 23, 3128, DOI: https://doi.org/10.3390/math9233128.
  • [20] B. O’Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, London, 1983.
  • [21] J. G. Ratcliffe, Foundations of Hyperbolic Manifolds, Graduate Texts in Mathematics, Springer, New York, 2006.
  • [22] J. Walrave, Curves and Surfaces in Minkowski space, Doctoral Thesis, K. U. Leuven, Faculty of Science, Leuven, 1995.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-220efeef-5afd-4084-94f3-cc311eae49fe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.