Czasopismo
2023
|
Vol. 23, no. 2
|
art. no. e125, 2023
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Due to magnesium and iron’s immiscibility, joining magnesium alloy and steel with modern welding procedures like friction stir welding (FSW) is still complicated. Insufficient chemical bonding and mixing of raw materials in the stir zone are the main problems of joining magnesium alloy and steel. Accordingly, this paper aims to use tools with different numbers of shoulders to boost the properties of the final joint. The different tools with 1, 2, 3 and 4 shoulders were produced and used between magnesium alloy and steel during FSW. The thermal changes during the process are monitored, material flow and mechanical properties are investigated, and fractography is done on the tensile test samples. The results show that increasing shoulder numbers enhances frictional heat generation but not leads to more mechanical interlocking of base metals at interfaces. The maximum heat was generated when welded by two shoulders (600 °C), and the lowest heat was generated in one shoulder joints (540 °C). The number of shoulders for achieving the best mechanical properties has limitations. The results show that the final quality of the joint improves from one shoulder tool to three, but shows decreases at joints that were welded by more than three shoulders. The most robust tensile strength was recorded in two shoulder samples (210 MPa) with brittle fracture behavior.
Czasopismo
Rocznik
Tom
Strony
art. no. e125, 2023
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
autor
- Mechanical Department, Engineering College, University of Basrah, Basrah 6100, Iraq
autor
- Mechanical Department, Engineering College, University of Basrah, Basrah 6100, Iraq
- Department of Mechanics, Design and Industrial Management, University of Deusto, Avda Universidades 24, 48007 Bilbao, Spain, h.aghajani@deusto.es
Bibliografia
- 1. Humpenöder F, et al. Land-use and carbon cycle responses to moderate climate change: Implications for land-based mitigation? Environ Sci Technol. 2015;49(11):6731-9. https://doi.org/10.1021/es506201r.
- 2. Kim HC, Wallington TJ. Life-cycle energy and greenhouse gas emission benefits of lightweighting in automobiles: review and harmonization. Environ Sci Technol. 2013;47(12):6089-97. https://doi.org/10.1021/es3042115.
- 3. Patel M, Pardhi B, Chopara S, Pal M. Lightweight composite materials for automotive - a review. Concepts J Appl Res. 2018;3(7):41-7.
- 4. Jiang H, Liao Y, Gao S, Li G, Cui J. Comparative study on joining quality of electromagnetic driven self-piecing riveting, adhesive and hybrid joints for Al/steel structure. Thin-Walled Struct. 2021;164:107903. https://doi.org/10.1016/J.TWS.2021.107903.
- 5. Jiang H, Liao Y, Jing L, Gao S, Li G, Cui J. Mechanical properties and corrosion behavior of galvanized steel/Al dissimilar joints. Archiv Civil Mech Eng. 2021. https://doi.org/10.1007/s43452-021-00320-5.
- 6. Chen YC, Nakata K. Friction stir lap welding of magnesium alloy and zinc-coated steel. Mater Trans. 2009;50(11):2598-603. https://doi.org/10.2320/matertrans.M2009022.
- 7. Al-Sabur R. Tensile strength prediction of aluminium alloys welded by FSW using response surface methodology - comparative review. Mater Today Proc. 2021. https://doi.org/10.1016/j.matpr.2020.12.1001.
- 8. Chikh A, Serier M, Al-Sabur R, Siddiquee AN, Gangil N. Thermal modeling of tool-work interface during friction stir welding process. Russ J Non-Ferrous Met. 2022;63(6):690-700. https://doi.org/10.3103/S1067821222060049.
- 9. Ghiasvand A, Noori SM, Suksatan W, Tomków J, Memon S, Derazkola HA. Effect of tool positioning factors on the strength of dissimilar friction stir welded joints of AA7075-T6 and AA6061-T6. Materials. 2022;15(7):2463. https://doi.org/10.3390/ma15072463.
- 10. Al-Sabur RK, Jassim AK. Friction stir spot welding applied to weld dissimilar metals of AA1100 Al-alloy and C11000 copper. IOP Conf Ser Mater Sci Eng. 2018. https://doi.org/10.1088/1757-899X/455/1/012087.
- 11. Memon S, Tomków J, Derazkola HA. Thermo-mechanical simulation of underwater friction stir welding of low carbon steel. Materials. 2021;14(17):4953. https://doi.org/10.3390/ma14174953.
- 12. Khalaf HI, Al-sabur R, Abdullah ME, Kubit A, Derazkola HA. Effects of underwater friction stir welding heat generation on residual stress of AA6068-T6 aluminum alloy. Materials. 2022;15(6):2223. https://doi.org/10.3390/ma15062223.
- 13. Al-Sabur R, Khalaf HI, Świerczyńska A, Rogalski G, Derazkola HA. Effects of noncontact shoulder tool velocities on friction stir joining of polyamide 6 (PA6). Materials. 2022;15(12):4214.
- 14. Derazkola HA, Simchi A. An investigation on the dissimilar friction stir welding of T-joints between AA5754 aluminum alloy and poly(methyl methacrylate). Thin-Walled Struct. 2019;135:376-84. https://doi.org/10.1016/j.tws.2018.11.027.
- 15. Abe Y, Watanabe T, Tanabe H, Kagiya K. Dissimilar metal joining of magnesium alloy to steel by FSW. Adv Mater Res. 2007;15-17:393-7. https://doi.org/10.4028/www.scientific.net/amr.15-17.393.
- 16. Watanabe T, Kagiya K, Yanagisawa A, Tanabe H. Solid state welding of steel and magnesium alloy using a rotating pin - Solid state welding of dissimilar metals using a rotating pin (report 3).Yosetsu Gakkai Ronbunshu/Q J Jpn Weld Soc. 2006;24(1):108-15. https://doi.org/10.2207/qjjws.24.108.
- 17. Jana S, Hovanski Y, Grant GJ. Friction stir lap welding of magnesium alloy to steel: a preliminary investigation. Metall Mater Trans A Phys Metall Mater Sci. 2010;41(12):3173-82. https://doi.org/10.1007/s11661-010-0399-8.
- 18. Schneider C, Weinberger T, Inoue J, Koseki T, Enzinger N. Characterization of interface of steel/magnesium FSW. Sci Technol Weld Join. 2011;16(1):100-7. https://doi.org/10.1179/1362171810Y.0000000012.
- 19. Jana S, Hovanski Y. Fatigue behaviour of magnesium to steel dissimilar friction stir lap joints. Sci Technol Weld Join. 2012;17(2):141-5. https://doi.org/10.1179/1362171811Y.0000000083.
- 20. Chen YC, Nakata K. Effect of tool geometry on microstructure and mechanical properties of friction stir lap welded magnesium alloy and steel. Mater Des. 2009;30(9):3913-9. https://doi.org/10.1016/j.matdes.2009.03.007.
- 21. Zhang ZK, Wang XJ, Wang PC, Zhao G. Friction stir key holeless spot welding of AZ31 Mg alloy-mild steel. Trans Nonferrous Met Soc China (English Edn). 2014;24(6):1709-16. https://doi.org/10.1016/S1003-6326(14)63244-1.
- 22. Wei Y, Li J, Xiong J, Huang F, Zhang F. Microstructures and mechanical properties of magnesium alloy and stainless steel weld-joint made by friction stir lap welding. Mater Des. 2012;33(1):111-4. https://doi.org/10.1016/j.matdes.2011.07.016.
- 23. Uematsu Y, Kakiuchi T, Tozaki Y, Kojin H. Comparative study of fatigue behaviour in dissimilar Al alloy/steel and Mg alloy/steel friction stir spot welds fabricated by scroll grooved tool without probe. Sci Technol Weld Join. 2012;17(5):348-56. https://doi.org/10.1179/1362171812Y.0000000014.
- 24. Kulkarni SS, et al. A combined experimental and modeling approach to investigate the performance of joint between AZ31 magnesium and uncoated DP590 steel using friction stir-assisted scribe technique. J Mater Eng Perform. 2021;30(11):8293-308. https://doi.org/10.1007/s11665-021-06060-0.
- 25. Das H, Upadhyay P, Wang T, Gwalani B, Ma X. Interfacial reaction during friction stir assisted scribe welding of immiscible Fe and Mg alloy system. Sci Rep. 2021. https://doi.org/10.1038/s41598-021-81266-9.
- 26. Sahu S, Mypati O, Pal SK, Shome M, Srirangam P. Effect of weld parameters on joint quality in friction stir welding of Mg alloy to DP steel dissimilar materials. CIRP J Manuf Sci Technol. 2021;35:502-16. https://doi.org/10.1016/j.cirpj.2021.06.012.
- 27. Fu B, et al. Revealing joining mechanism in refill friction stir spot welding of AZ31 magnesium alloy to galvanized DP600 steel. Mater Des. 2021;209:109997. https://doi.org/10.1016/j.matdes.2021.109997.
- 28. Chen Y, Chen J, ShalchiAmirkhiz B, Worswick MJ, Gerlich AP. Microstructures and properties of Mg alloy/DP600 steel dissimilar refill friction stir spot welds. Sci Technol Weld Join. 2015;20(6):494-501. https://doi.org/10.1179/1362171815Y.0000000033.
- 29. Shen Z, Ding Y, Chen J, Gerlich AP. Comparison of fatigue behavior in Mg/Mg similar and Mg/steel dissimilar refill friction stir spot welds. Int J Fatigue. 2016;92:78-86. https://doi.org/10.1016/j.ijfatigue.2016.06.033.
- 30. Liyanage T, Kilbourne J, Gerlich AP, North TH. Joint formation in dissimilar Al alloy/steel and Mg alloy/steel friction stir spot welds. Sci Technol Weld Join. 2009;14(6):500-8. https://doi.org/10.1179/136217109X456960.
- 31. Singh VP, Patel SK, Kumar N, Kuriachen B. Parametric effect on dissimilar friction stir welded steel-magnesium alloys joints: a review. Sci Technol Weld Join. 2019;24(8):653-84. https://doi.org/10.1080/13621718.2019.1567031.
- 32. Zhang YN, Cao X, Larose S, Wanjara P. Review of tools for friction stir welding and processing. Can Metallur Q. 2012;51(3):250-61. https://doi.org/10.1179/1879139512Y.0000000015.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-22049b4d-c9a2-4767-9b9d-1d11c9e8182d