Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 42, no. 3 | 934--949
Tytuł artykułu

Prospects for the application of aptamer based assay platforms in pathogen detection

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Aptamer-based diagnostics platforms for animal, human, plant and environmental pathogens are gaining importance as they are rapid, user-friendly, sensitive and selective. However, most of the aptamer-based platforms have not yet become commercially available. The increasing number of publications signifies the applications of aptamer-based platform and their potential. Herein, the present review is to describe, a brief overview of the development of various aptamer-based platforms and their applicability for the sensitive detection of pathogens. In this review, several aptamer-based platforms such as Enzyme linked immunosorbent assay (ELISA)-like assay, Apta blot, Apta Polymerase Chain Reaction (PCR), Apta array, Aptamer-based Lateral Flow Assays (LFA), Aptamer based fluorescence assay, Flowcytometry-based assay, Apta affinity chromatography, microfluidics-based platforms, and various aptasensor have been discussed. Most of the platforms are highlighted will encourage researchers to focus on developing pathogen detection platform for various applications.
Słowa kluczowe
Wydawca

Rocznik
Strony
934--949
Opis fizyczny
Bibliogr. 114 poz., rys., tab.
Twórcy
autor
  • Shankaranarayana Life Sciences LLP, Bengaluru, Karnataka, India
autor
  • Shankaranarayana Life Sciences LLP, Bengaluru, Karnataka, India
autor
  • Shankaranarayana Life Sciences LLP, Bengaluru, Karnataka, India
  • Shankaranarayana Life Sciences LLP, Bengaluru, Karnataka, India
  • Department of Biotechnology, RVCE, Bengaluru, Karnataka, India
Bibliografia
  • [1] McMichael AJ. Environmental and social influences on emerging infectious diseases: past, present and future. Philos Trans R Soc Lond B Biol Sci 2004;359(1447):1049–58.
  • [2] Engering A, Hogerwerf L, Slingenbergh J. Pathogen–host–environment interplay and disease emergence. Emerging Microbes Infect 2013;2(1):1–7.
  • [3] Jayasena SD. Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem 1999;45(9):1628–50.
  • [4] Hamula CL, Guthrie JW, Zhang H, Li XF, Le XC. Selection and analytical applications of aptamers. TrAC, Trends Anal Chem 2006;25(7):681–91.
  • [5] Dunn MR, Jimenez RM, Chaput JC. Analysis of aptamer discovery and technology. Nat Rev Chem 2017;1(10):1–16.
  • [6] Hamula CL, Zhang H, Li F, Wang Z, Le XC, Li XF. Selection and analytical applications of aptamers binding microbial pathogens. TrAC, Trends Anal Chem 2011;30(10):1587–97.
  • [7] Wu YX, Kwon YJ. Aptamers: The ‘‘evolution” of SELEX. Methods 2016;106:21–8.
  • [8] Darmostuk M, Rimpelova S, Gbelcova H, Ruml T. Current approaches in SELEX: An update to aptamer selection technology. Biotechnol Adv 2015;33(6):1141–61.
  • [9] Tombelli S, Minunni M, Mascini M. Analytical applications of aptamers. Biosens Bioelectron 2005;20(12):2424–34.
  • [10] Brody EN, Gold L. Aptamers as therapeutic and diagnostic agents. Rev Mol Biotechnol 2000;74(1):5–13.
  • [11] Kaur H. Recent developments in cell-SELEX technology for aptamer selection. Biochim Biophys Acta (BBA)-Gen Subj 2018;1862(10):2323–9.
  • [12] Chen Z, Ali Z, Li S, Liu B, He N. Aptamers generated from cell-systematic evolution of ligands through exponential enrichment and their applications. J Nanosci Nanotechnol 2016;16(9):9346–58.
  • [13] Klug SJ, Famulok M. All you wanted to know about SELEX. Mol Biol Rep 1994;20(2):97–107.
  • [14] Thiel KW, Giangrande PH. Therapeutic applications of DNA and RNA aptamers. Oligonucleotides 2009;19(3):209–22.
  • [15] Stoltenburg R, Reinemann C, Strehlitz B. SELEX—a (r) evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng 2007;24(4):381–403.
  • [16] Dong Y, Wang Z, Wang S, Wu Y, Ma Y, Liu J. Introduction of SELEX and important SELEX variants. In: Dong Y, editor. Aptamers for analytical applications: affinity acquisition and method design.Weinheim, Germany:Wiley-VCH Verlag GmbH & Co. KGaA; 2018. p. 1–25.
  • [17] McKeague M, DeRosa MC. Challenges and opportunities for small molecule aptamer development. J Nucleic Acids 2012;2012:1–20.
  • [18] Chen X, Huang Y, Duan N,Wu S, Xia Y, Ma X, et al. Screening and identification of DNA aptamers against T-2 toxin assisted by graphene oxide. J Agric Food Chem 2014;62(42):10368–74.
  • [19] Ogasawara D, Hasegawa H, Kaneko K, Sode K, Ikebukuro K. Screening of DNA aptamer against mouse prion protein by competitive selection. Prion 2007;1(4):248–54.
  • [20] Kudłak B, Wieczerzak M. Aptamer based tools for environmental and therapeutic monitoring: A review of developments, applications, future perspectives. Crit Rev Environ Sci Technol 2020;50(8):816–67.
  • [21] Toh SY, Citartan M, Gopinath SC, Tang TH. Aptamers as a replacement for antibodies in enzyme-linked immunosorbent assay. Biosens Bioelectron 2015;64:392–403.
  • [22] Vishwakarma A, Lal R, Ramya M. Aptamer-based approaches for the detection of waterborne pathogens. Int Microbiol 2021;24(2):125–40.
  • [23] Lavu PSR, Mondal B, Ramlal S, Murali HS, Batra HV. Selection and characterization of aptamers using a modified whole cell bacterium SELEX for the detection of Salmonella enterica serovar typhimurium. ACS Comb Sci 2016;18(6):292–301.
  • [24] Masoudipour E, Mousavi SL, Basiri M. Specific detection of Shigella sonnei by enzyme-linked aptamer sedimentation assay. Progr Biol Sci 2011;1(1):11–25.
  • [25] GongW, Duan N, Wu S, Huang Y, Chen X, Wang Z. Selection, identification, and application of dual DNA aptamers against Shigella sonnei. Anal Methods 2015;7(8): 3625–31.
  • [26] Lamont EA, Wang P, Enomoto S, Borewicz K, Abdallah A, Isaacson RE, et al. A combined enrichment and aptamer pulldown assay for Francisella tularensis detection in food and environmental matrices. PLoS ONE 2014;9(12): e114622.
  • [27] Yu Q, Liu M, Xiao H,Wu S, Qin X, Ke K, et al. Development of novel aptamer-based enzyme-linked apta-sorbent assay (ELASA) for rapid detection of mariculture pathogen Vibrio alginolyticus. J Fish Dis 2019;42(11):1523–9.
  • [28] Ramos E, Pineiro D, Soto M, Abanades DR, Martín ME, Salinas M, et al. A DNA aptamer population specifically detects Leishmania infantum H2A antigen. Lab Invest 2007;87(5):409–16.
  • [29] Wang R, Zhao J, Jiang T, Kwon YM, Lu H, Jiao P, et al. Selection and characterization of DNA aptamers for use in detection of avian influenza virus H5N1. J Virol Methods 2013;189(2):362–9.
  • [30] Torres-Vázquez B, de Lucas AM, García-Crespo C, García-Martín JA, Fragoso A, Fernández-Algar M, et al. In vitro selection of high affinity DNA and RNA aptamers that detect hepatitis C virus core protein of genotypes 1 to 4 and inhibit virus production in cell culture. J Mol Biol 2022;434(7):167501.
  • [31] Escudero-Abarca BI, Suh SH, Moore MD, Dwivedi HP, Jaykus L-A, Willson RC. Selection, characterization and application of nucleic acid aptamers for the capture and detection of human norovirus strains. PLoS ONE 2014;9(9):e106805.
  • [32] Lee KH, Zeng H. Aptamer-based ELISA assay for highly specific and sensitive detection of Zika NS1 protein. Anal Chem 2017;89(23):12743–8.
  • [33] Hasegawa H, Sode K, Ikebukuro K. Selection of DNA aptamers against VEGF165 using a protein competitor and the aptamer blotting method. Biotechnol Lett 2008;30(5):829–34.
  • [34] Citartan M. Aptamers as the powerhouse of dot blot assays. Talanta 2021;232:122436.
  • [35] Mondal B, Ramlal S, Lavu PSR, Murali HS, Batra HV. A combinatorial systematic evolution of ligands by exponential enrichment method for selection of aptamer against protein targets. Appl Microbiol Biotechnol 2015;99(22):9791–803.
  • [36] Alizadeh N, Memar MY, Moaddab SR, Kafil HS. Aptamer-assisted novel technologies for detecting bacterial pathogens. Biomed Pharmacother 2017;93:737–45.
  • [37] Renuka RM, Achuth J, Chandan HR, Venkataramana M, Kadirvelu K. A fluorescent dual aptasensor for the rapid and sensitive onsite detection of E. coli O157: H7 and its validation in various food matrices. New J Chem 2018;42(13):10807–17.
  • [38] Zhao Q, Li XF, Shao Y, Le XC. Aptamer-based affinity chromatographic assays for thrombin. Anal Chem 2008;80(19):7586–93.
  • [39] Peyrin E. Aptamers as ligands for affinity chromatography and capillary electrophoresis applications. In: Klussmann S, editor. The aptamer handbook: functional oligonucleotides and their applications. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA; 2006. p. 324–42.
  • [40] Biroccio A, Hamm J, Incitti I, De Francesco R, Tomei L. Selection of RNA aptamers that are specific and high-affinity ligands of the hepatitis C virus RNA-dependent RNA polymerase. J Virol 2002;76(8):3688–96.
  • [41] Shcherbakova DM, Sokolov KA, Zvereva MI, Dontsova OA. Telomerase from yeast Saccharomyces cerevisiae is active in vitro as a monomer. Biochemistry (Moscow) 2009;74(7):749–55.
  • [42] Rehder MA, McGown LB. Open-tubular capillary electrochromatography of bovine b-lactoglobulin variants A and B using an aptamer stationary phase. Electrophoresis 2001;22(17):3759–64.
  • [43] Witt M, Walter JG, Stahl F. Aptamer microarrays-Current status and future prospects. Microarrays 2015;4(2):115–32.
  • [44] Collett JR, Cho EJ, Ellington AD. Production and processing of aptamer microarrays. Methods 2005;37(1):4–15.
  • [45] Cho EJ, Collett JR, Szafranska AE, Ellington AD. Optimization of aptamer microarray technology for multiple protein targets. Anal Chim Acta 2006;564(1):82–90.
  • [46] Kinghorn AB, Dirkzwager RM, Liang S, Cheung YW, Fraser LA, Shiu SCC, et al. Aptamer affinity maturation by resampling and microarray selection. Anal Chem 2016;88(14):6981–5.
  • [47] Gold L, Ayers D, Bertino J, Bock C, Bock A, Brody E, et al. Aptamer-based multiplexed proteomic technology for biomarker discovery. Nat Preced 2010:1.
  • [48] Fischer NO, Tarasow TM, Tok JBH. Protein detection via direct enzymatic amplification of short DNA aptamers. Anal Biochem 2008;373(1):121–8.
  • [49] Pinto A, Polo PN, Rubio MJ, Svobodova M, Lerga TM, O’Sullivan CK. Apta-PCR. In: Nucleic Acid Aptamers. New York, NY: Humana Press; 2016. p. 171–7.
  • [50] Fredriksson S, Gullberg M, Jarvius J, Olsson C, Pietras K, Gústafsdóttir SM, et al. Protein detection using proximity-dependent DNA ligation assays. Nat Biotechnol 2002;20(5):473–7.
  • [51] Civit L, Pinto A, Rodrigues-Correia A, Heckel A, O’Sullivan CK, Mayer G. Sensitive detection of cancer cells using light-mediated apta-PCR. Methods 2016;97:104–9.
  • [52] Svobodova M, Mairal T, Nadal P, Bermudo MC, O’Sullivan CK. Ultrasensitive aptamer-based detection of b-conglutin food allergen. Food Chem 2014;165:419–23.
  • [53] Pinto A, Redondo MCB, Ozalp VC, O’Sullivan CK. Real-time apta-PCR for 20000-fold improvement in detection limit. Mol BioSyst 2009;5(5):548–53.
  • [54] Pinto A, Polo PN, Henry O, Redondo M, Svobodova M, O’Sullivan CK. Label-free detection of gliadin food allergen mediated by real-time apta-PCR. Anal Bioanal Chem 2014;406(2):515–24.
  • [55] Jauset-Rubio M, El-Shahawi MS, Bashammakh AS, Alyoubi AO, Ciara KO. Advances in aptamers-based lateral flow assays. TrAC, Trends Anal Chem 2017;97: 385–98.
  • [56] Kaiser L, Weisser J, Kohl M, Deigner HP. Small molecule detection with aptamer based lateral flow assays: Applying aptamer-C-reactive protein cross-recognition for ampicillin detection. Sci Rep 2018;8(1):5628.
  • [57] Le TT, Chang P, Benton DJ, McCauley JW, Iqbal M, Cass AE. Dual recognition element lateral flow assay toward multiplex strain specific influenza virus detection. Anal Chem 2017;89(12):6781–6.
  • [58] Frohnmeyer E, Tuschel N, Sitz T, Hermann C, Dahl GT, Schulz F, et al. Aptamer lateral flow assays for rapid and sensitive detection of cholera toxin. Analyst 2019;144(5):1840–9.
  • [59] Fang Z, Wu W, Lu X, Zeng L. Lateral flow biosensor for DNA extraction-free detection of salmonella based on aptamer mediated strand displacement amplification. Biosens Bioelectron 2014;56:192–7.
  • [60] Chiu T-C, Huang C-C. Aptamer-functionalized nanobiosensors. Sensors 2009;9(12):10356–88.
  • [61] Wen L, Qiu L, Wu Y, Hu X, Zhang X. Aptamer-modified semiconductor quantum dots for biosensing applications. Sensors 2017;17(8):1736.
  • [62] Ikanovic M, Rudzinski WE, Bruno JG, Allman A, Carrillo MP, Dwarakanath S, et al. Fluorescence assay based on aptamer-quantum dot binding to Bacillus thuringiensis spores. J Fluoresc 2007;17(2):193–9.
  • [63] Ren J, Liang G, Man Y, Li An, Jin X, Liu Q, et al. Aptamer-based fluorometric determination of Salmonella Typhimurium using Fe3O4 magnetic separation and CdTe quantum dots. PLoS ONE 2019;14(6):e0218325.
  • [64] Zhang J, Tian J, He Y, Chen S, Jiang Y, Zhao Y, et al. Protein-binding aptamer assisted signal amplification for the detection of influenza A (H1N1) DNA sequences based on quantum dot fluorescence polarization analysis. Analyst 2013;138(17):4722–7.
  • [65] Ramlal S, Mondal B, Lavu PS, Bhavanashri N, Kingston J. Capture and detection of Staphylococcus aureus with dual labeled aptamers to cell surface components. Int J Food Microbiol 2018;265:74–83.
  • [66] Duan N, Wu S, Dai S, Miao T, Chen J, Wang Z. Simultaneous detection of pathogenic bacteria using an aptamer based biosensor and dual fluorescence resonance energy transfer from quantum dots to carbon nanoparticles. Microchim Acta 2015;182(5):917–23.
  • [67] Weng X, Neethirajan S. Aptamer-based fluorometric determination of norovirus using a paper-based microfluidic device. Microchim Acta 2017;184(11): 4545–52.
  • [68] Shrivastava S, Lee WI, Lee NE. Culture-free, highly sensitive, quantitative detection of bacteria from minimally processed samples using fluorescence imaging by smartphone. Biosens Bioelectron 2018;109:90–7.
  • [69] Meyer M, Scheper T, Walter JG. Aptamers: versatile probes for flow cytometry. Appl Microbiol Biotechnol 2013;97(16):7097–109.
  • [70] Lavu PS, Mondal B, Ramlal S. Selection and characterization of cell surface specific aptamer and development of fluorescence assay for detection of Shigella flexneri from water samples. J Fluoresc 2021;31(3):685–93.
  • [71] Dwivedi HP, Smiley RD, Jaykus LA. Selection and characterization of DNA aptamers with binding selectivity to Campylobacter jejuni using whole-cell SELEX. Appl Microbiol Biotechnol 2010;87(6):2323–34.
  • [72] Dwivedi HP, Smiley RD, Jaykus LA. Selection of DNA aptamers for capture and detection of Salmonella Typhimurium using a whole-cell SELEX approach in conjunction with cell sorting. Appl Microbiol Biotechnol 2013;97(8):3677–86.
  • [73] Hibi K, Abe A, Ohashi E, Mitsubayashi K, Ushio H, Hayashi T, et al. Combination of immunomagnetic separation with flow cytometry for detection of Listeria monocytogenes. Anal Chim Acta 2006;573:158–63.
  • [74] Duan N, Wu S, Yu Y, Ma X, Xia Y, Chen X, et al. A dual-color flow cytometry protocol for the simultaneous detection of Vibrio parahaemolyticus and Salmonella typhimurium using aptamer conjugated quantum dots as labels. Anal Chim Acta 2013;804:151–8.
  • [75] Shaban SM, Kim DH. Recent advances in aptamer sensors. Sensors 2021;21(3):979.
  • [76] Chang CC. Recent advancements in aptamer-based surface plasmon resonance biosensing strategies. Biosensors 2021;11(7):233.
  • [77] Bai H, Wang R, Hargis B, Lu H, Li Y. A SPR aptasensor for detection of avian influenza virus H5N1. Sensors 2012;12(9):12506–18.
  • [78] Tombelli S, Minunni M, Luzi E, Mascini M. Aptamer-based biosensors for the detection of HIV-1 Tat protein. Bioelectrochemistry 2005;67(2):135–41.
  • [79] Pang Y, Wan N, Shi L, Wang C, Sun Z, Xiao R, et al. Dual-recognition surface-enhanced Raman scattering (SERS) biosensor for pathogenic bacteria detection by using vancomycin-SERS tags and aptamer-Fe3O4@ Au. Anal Chim Acta 2019;1077:288–96.
  • [80] Li Y, Lu C, Zhou S, Fauconnier M-L, Gao F, Fan B, et al. Sensitive and simultaneous detection of different pathogens by surface-enhanced Raman scattering based on aptamer and Raman reporter co-mediated gold tags. Sens Actuators, B 2020;317:128182.
  • [81] Wang J, Wu X, Wang C, Shao N, Dong P, Xiao R, et al. Magnetically assisted surface-enhanced Raman spectroscopy for the detection of Staphylococcus aureus based on aptamer recognition. ACS Appl Mater Interfaces 2015;7(37):20919–29.
  • [82] Negri P, Chen G, Kage A, Nitsche A, Naumann D, Xu B, et al. Direct optical detection of viral nucleoprotein binding to an anti-influenza aptamer. Anal Chem 2012;84(13):5501–8.
  • [83] Mondal B, Ramlal S, Lavu PS, Kingston J. Highly sensitive colorimetric biosensor for Staphylococcal enterotoxin B by a label-free aptamer and gold nanoparticles. Front Microbiol 2018;9:179.
  • [84] Kaya HO, Cetin AE, Azimzadeh M, Topkaya SN. Pathogen detection with electrochemical biosensors: Advantages, challenges and future perspectives. J Electroanal Chem 2021;882:114989.
  • [85] Sassolas A, Blum LJ, Leca-Bouvier BD. Electrochemical aptasensors. Electroanalysis 2009;21(11):1237–50.
  • [86] Kirkegaard J, Rozlosnik N. Screen-printed all-polymer aptasensor for impedance based detection of influenza A virus. In: Biosensors and biodetection. New York, NY: Humana Press; 2017. p. 55–70.
  • [87] Labib M, Berezovski MV. Electrochemical aptasensors for microbial and viral pathogens. Biosens Aptamers Enzy 2013:155–81.
  • [88] Karash S, Wang R, Kelso L, Lu H, Huang TJ, Li Y. Rapid detection of avian influenza virus H5N1 in chicken tracheal samples using an impedance aptasensor with gold nanoparticles for signal amplification. J Virol Methods 2016;236:147–56.
  • [89] Brosel-Oliu S, Ferreira R, Uria N, Abramova N, Gargallo R, Munoz-Pascual FX, et al. Novel impedimetric aptasensor for label-free detection of Escherichia coli O157: H7. Sens Actuators, B 2018;255:2988–95.
  • [90] Silva NF, Magalhaes JM, Barroso MF, Oliva-Teles T, Freire C, Delerue-Matos C. In situ formation of gold nanoparticles in polymer inclusion membrane: Application as platform in a label-free potentiometric immunosensor for Salmonella typhimurium detection. Talanta 2019;194:134–42.
  • [91] Zelada-Guillen GA, Sebastián-Avila JL, Blondeau P, Riu J, Rius FX. Label-free detection of Staphylococcus aureus in skin using real-time potentiometric biosensors based on carbon nanotubes and aptamers. Biosens Bioelectron 2012;31(1):226–32.
  • [92] Zhao YW, Wang HX, Jia GC, Li Z. Application of aptamer-based biosensor for rapid detection of pathogenic Escherichia coli. Sensors 2018;18(8):2518.
  • [93] Abbaspour A, Norouz-Sarvestani F, Noori A, Soltani N. Aptamer-conjugated silver nanoparticles for electrochemical dual-aptamer-based sandwich detection of staphylococcus aureus. Biosens Bioelectron 2015;68:149–55.
  • [94] Idili A, Parolo C, Alvarez-Diduk R, Merkoc¸ i A. Rapid and efficient detection of the SARS-CoV-2 spike protein using an electrochemical aptamer-based sensor. ACS Sensors 2021;6(8):3093–101.
  • [95] Luo C, Lei Y, Yan L, Yu T, Li Q, Zhang D, et al. A rapid and sensitive aptamer-based electrochemical biosensor for direct detection of Escherichia coli O111. Electroanalysis 2012;24(5):1186–91.
  • [96] Liu X, Cheng Z, Fan H, Ai S, Han R. Electrochemical detection of avian influenza virus H5N1 gene sequence using a DNA aptamer immobilized onto a hybrid nanomaterial-modified electrode. Electrochim Acta 2011;56(18):6266–70.
  • [97] Ruslinda AR, Tanabe K, Ibori S, Wang X, Kawarada H. Effects of diamond-FET-based RNA aptamer sensing for detection of real sample of HIV-1 Tat protein. Biosens Bioelectron 2013;40(1):277–82.
  • [98] Deakin MR, Buttry DA. Electrochemical applications of the quartz crystal microbalance. Anal Chem 1989;61(20):1147A–54A.
  • [99] Ling Z, Ming-HuaW, Jian-PingW, Zhun-Zhong Y. Application of biosensor surface immobilization methods for aptamer. Chin J Anal Chem 2011;39(3):432–8.
  • [100] Minunni M, Tombelli S, Gullotto A, Luzi E, Mascini M. Development of biosensors with aptamers as biorecognition element: the case of HIV-1 Tat protein. Biosens Bioelectron 2004;20(6):1149–56.
  • [101] Wang L, Wang R, Chen F, Jiang T, Wang H, Slavik M, et al. QCM-based aptamer selection and detection of Salmonella typhimurium. Food Chem 2017;221:776–82.
  • [102] Pleshakova TO, Kaysheva AL, Bayzyanova JM, Anashkina AS, Uchaikin VF, Ziborov VS, et al. The detection of hepatitis cvirus core antigen using afm chips with immobolized aptamers. J Virol Methods 2018;251:99–105.
  • [103] Dale GA, Knight IT, Canon US Life Sciences Inc, 2016. Chip and cartridge design configuration for performing micro-fluidic assays. U.S. Patent 9,278,321.
  • [104] Mazaafrianto DN, Maeki M, Ishida A, Tani H, Tokeshi M. Recent microdevice-based Aptamer sensors. Micromachines 2018;9(5):202.
  • [105] Xu Y, Yang X, Wang E. Aptamers in microfluidic chips. Anal Chim Acta 2010;683(1):12–20.
  • [106] Lou X, Qian J, Xiao Y, Viel L, Gerdon AE, Lagally ET, et al. Micromagnetic selection of aptamers in microfluidic channels. Proc Natl Acad Sci USA 2009;106(9):2989–94.
  • [107] Zhang C, Lv X, Han X, Man Y, Saeed Y, Qing H, et al. Wholecell based aptamer selection for selective capture of microorganisms using microfluidic devices. Anal Methods 2015;7(15):6339–45.
  • [108] Saraf N, Villegas M, Willenberg BJ, Seal S. Multiplex viral detection platform based on a aptamers-integrated microfluidic channel. ACS Omega 2019;4(1):2234–40.
  • [109] Lum J, Wang R, Hargis B, Tung S, Bottje W, Lu H, et al. An impedance aptasensor with microfluidic chips for specific detection of H5N1 avian influenza virus. Sensors 2015;15(8):18565–78.
  • [110] Wang CH, Chang CP, Lee GB. Integrated microfluidic device using a single universal aptamer to detect multiple types of influenza viruses. Biosens Bioelectron 2016;86:247–54.
  • [111] Zuo P, Li X, Dominguez DC, Ye BC. A PDMS/paper/glass hybrid microfluidic biochip integrated with aptamer-functionalized graphene oxide nano-biosensors for one-step multiplexed pathogen detection. Lab Chip 2013;13(19):3921–8.
  • [112] Liu X, Zhang X. Aptamer-based technology for food analysis. Appl Biochem Biotechnol 2015;175(1):603–24.
  • [113] Zhao Z, Ukidve A, Kim J, Mitragotri S. Targeting strategies for tissue-specific drug delivery. Cell 2020;181(1):151–67.
  • [114] Weng X, Neethirajan S. A microfluidic biosensor using graphene oxide and aptamer-functionalized quantum dots for peanut allergen detection. Biosensors and Bioelectronics 2016;85:649–56.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-21a13152-b2d5-4bbd-93f3-aa62f89a7194
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.