Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | Vol. 64, nr 1 | 70--83
Tytuł artykułu

Potholes of Mountain River as Biodiversity Spots : Structure and Dynamics of the Benthic Invertebrate Community

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Temporary freshwater rock pools, as special, small-sized and isolated habitats, provide ideal systems for studying island biogeography and ecological theories and processes. In this study, a total of 70 potholes of mountain rivers were sampled during the four seasons from November 2013 to October 2014 to assess the structure of the benthic invertebrate community and to identify the relationships between habitat characteristics and the community composition. Pothole area ranged from approximately 0.01 to 0.39 m2, and pothole depth ranged from 0.03 to 0.74 m. Forty-three taxa belonging to 37 families and 16 orders were collected from the potholes. The highest numbers of benthic invertebrate taxa were observed in summer and the highest average number of taxa per pothole (8.5) was observed in autumn. The diversity was the highest in spring, and the average densities of benthic invertebrates were highest in autumn. Large potholes supported more taxa than small ones and significant relationships between richness and pothole area, richness and water volume were observed. The results of Redundancy Analysis show that the community composition of benthic invertebrates in the potholes was closely correlated with water temperature, pothole area and water depth. Our results indicate that benthic invertebrate communities in river potholes are mainly structured by water depth, pothole area and water volume. The seasonal changes are also an important factor determining the presence/absence of certain taxa.
Wydawca

Rocznik
Strony
70--83
Opis fizyczny
Bibliogr. 64 poz., fot., mapa, tab., wykr.
Twórcy
autor
  • State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400030, China
  • Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400030, China
  • College of Resources and Environmental Science, Chongqing University, Chongqing 400030, China
autor
  • State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400030, China, xzyuan63@aliyun.com
  • Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400030, China
  • College of Resources and Environmental Science, Chongqing University, Chongqing 400030, China
autor
  • State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400030, China
  • Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400030, China
  • College of Resources and Environmental Science, Chongqing University, Chongqing 400030, China
autor
  • State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400030, China
  • Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400030, China
  • College of Resources and Environmental Science, Chongqing University, Chongqing 400030, China
autor
  • College of Resources and Environmental Science, Chongqing University, Chongqing 400030, China
Bibliografia
  • [1] Alexander H. S. 1932 — Pothole erosion — J. Geol. 40: 305–337.
  • [2] Altermatt F. , Ebert D. 2008 — The influence of pool volume and summer desiccation on the production of the resting and dispersal stage in a Daphnia metapopulation — Oecologia, 157: 441–452.
  • [3] Bayly I. A. E. 1997 — Invertebrates of temporary waters in gnammas on granite outcrops in Western Australia — J. R. Soc. West. Aust. 80: 167–172.
  • [4] Beisel J. N. , Usseglio-Polatera P. , Thomas S. , Moreteau J. C. 1998 — Stream community structure in relation to spatial variation: the influence of mesohabitat characteristics — Hydrobiologia, 389: 73–88.
  • [5] Binckley C. A. , Resetarits W. J. 2005 — Habitat selection determines abundance, richness and species composition of beetles in aquatic communities — Biol. Lett. 1: 370–374.
  • [6] Bisson P. A. , Montgomery D. R. , Buffington J. M. 2007 — Valley segments, stream reaches, and channel units (In: Methods in Stream Ecology, 2nd ed, Eds: F. R. Hauer , G. A. Lamberti ) − Oxford Academic Press, pp. 24–24.
  • [7] Blaustein L. , Schwartz S. S. 2001 — Why study ecology in temporary pools? — Isr. J. Zool. 47: 303–312.
  • [8] Bonada N. , Rieradevall M. , Prat N. , Resh V. H. 2006 — Benthic macroinvertebrate assemblages and macrohabitat connectivity in Mediterranean-climate streams of northern California — J. N. Am. Benthol. Soc. 25: 32–43.
  • [9] Brendonck L. , Jocqué M. , Hulsmans A. , Vanschoenwinkel B. 2010 — Pools ‘on the rocks’: freshwater rock pools as model system in ecological and evolutionary research — Limnetica, 29: 25–40.
  • [10] Connor E. F. , McCoy E. D. 1979 — The statistics and biology of the species-area relationship — Am. Nat. 113: 791–833.
  • [11] Cottenie K. , Meester L. D. 2003 — Connectivity and cladoceran species richness in a metacommunity of shallow lakes — Freshwat. Biol. 48: 823–832.
  • [12] Dodson S. I. 1987 — Animal assemblages in temporary desert rock pools: aspects of the ecology of Dasyhelea sublettei (Diptera: Ceratopogonidae) — J. N. Am. Benthol. Soc. 6: 65–71.
  • [13] Dudgeon D. , Arthington A. H. , Gessner M. O. , Kawabata Z. , Knowler D. J. , Lévêque C. , Naiman R. J. , Prieur-Richard A. , Soto D. , Stiassny M. L. J. , Sullivan C. A. 2006 — Freshwater biodiversity: importance, threats, status and conservation challenges — Biol. Rev. 81: 163–182.
  • [14] Ferreira M. , Wepener V. , van Vuren J. H. J. 2012 — Aquatic invertebrate communities of perennial pans in Mpumalanga, South Africa: a diversity and functional approach — Afr. Inverter. 53: 751–768.
  • [15] Eitam A. , Blaustein L. , Van Damme K. 2004 — Crustacean species richness in temporary pools: relationships with habitat traits — Hydrobiologia, 525: 125–30.
  • [16] Firth L. B. , Crowe T. P. 2008 — Large-scale coexistence and small-scale segregation of key species on rocky shores — Hydrobiologia, 614: 233–241.
  • [17] Firth L. B. , Schofield M. , White F. J. , Skov M. W. , Hawkins S. J. 2014 — Biodiversity in intertidal rock pools: Informing engineering criteria for artificial habitat enhancement in the built environment — Mar. Environ. Res. 102: 122–130.
  • [18] Fryer G. 1987 — Quantitative and qualitative: numbers and reality in the study of living organisms — Freshwat. Biol. 17: 177–189.
  • [19] Griffin J. N. , Noël L. M. L. J. , Crowe T. P. , Burrows M. T. , Hawkins S. J. , Thompson R. C. , Jenkins S. R. 2010 — Consumer effects on ecosystem functioning in rock pools: roles of species richness and composition — Mar. Ecol-Prog. Ser. 420: 45–56.
  • [20] Hart D. D. , Horwitz R. J. 1991 — Habitat diversity and the species-area relationship: alternative models and tests (In: Habitat Structure, Eds: S. S. Bell , E. D. McCoy , H. R. Mushinsky ) — London, Chapman and Hall, pp. 47–68.
  • [21] Heino J. , Parviainen J. , Paavola R. , Jehle M. , Louhi P. , Muotka T. 2005 — Characterizing macroinvertebrate assemblage structure in relation to stream size and tributary position — Hydrobiologia, 539: 121–130.
  • [22] Hildrew A. G. , Townsend C. R. , Henderson J. 1980 — Interactions between larval size, microdistribution and substrate in the stoneflies of an iron-rich stream — Oikos, 35: 387–396.
  • [23] Hughes L. 2000 — Biological consequences of global warming: is the signal already apparent? — Trends Ecol. Evol. 15: 56–61.
  • [24] Jocqué M. , Martens K. , Riddoch B. J. , Brendonck L. 2006 — Faunistics of ephemeral rock pools in Southeastern Botswana — Arch. Hydrobiol. 165: 415–431.
  • [25] Jocqué M. , Graham T. , Brendonck L. 2007a — Local structuring factors of invertebrate communities in ephemeral freshwater rock pools and the influence of more permanent water bodies in the region — Hydrobiologia, 592: 271–280.
  • [26] Jocqué M. , Riddoch B. J. , Brendonck L. 2007b — Successive phases and species replacements in freshwater rock pools towards a biological definition of ephemeral water bodies — Freshwat. Biol. 52: 1734–1744.
  • [27] Jocqué M. , Vanschoenwinkel B. , Brendonck L. 2010 — Freshwater rock pools: a review of habitat characteristics, faunal diversity and conservation value — Freshwat. Biol. 55: 1587–1602.
  • [28] Kitching R. L. 2000 — Food Webs and Container Habitats — The Natural History and Ecology of Phytotelmata. Cambridge University Press, Cambridge, UK.
  • [29] Kiflawi M. , Eitam A. , Blaustein L. 2003 — The relative impact of local and regional processes on macroinvertebrate species richness in temporary pools — J. Anim. Ecol. 72: 447–452.
  • [30] Kneitel J. M. , Miller T. E. 2003 — Dispersal rates affect species composition in metacommunities of Sarracenia purpurea inquilines — Am. Nat. 162, 165–171.
  • [31] Kosnicki E. , Sites R. W. 2011 — Seasonal predictability of benthic macroinvertebrate metrics and community structure with maturity-weighted abundances in a Missouri Ozark stream, USA — Ecol. Indic. 11: 704–714.
  • [32] Kolasa J. , Manne L. L. , Pandit S. N. 2012 — Species-area relationships arise from interaction of habitat heterogeneity and species pool — Hydrobiologia, 685: 135–144.
  • [33] Leibold M. A. , Norberg J. 2004 — Biodiversity in metacommunities: plankton as complex adaptive systems? — Limnol. Oceanogr. 49: 1278– 1289.
  • [34] MacArthur R. H. , Wilson E. O. 1967 — The theory of island biogeography — Princeton University Press, Princeton, N.J. 203 pp.
  • [35] March F. , Bass D. 1995 — Application of island biogeography theory to temporary pools — J. Freshwat. Ecol. 10: 83–85.
  • [36] McKay R. 1996 — Temporary aquatic habitats — J. N. Am. Benthol. Soc. 15: 406.
  • [37] McLachlan A. , Ladle R. 2001 — Life in the puddle: behavioural and life cycle adaptations in the Diptera of tropical rain pools — Biol. Rev. 76: 377–388.
  • [38] Meintjes S. 1996 — Seasonal changes in the invertebrate community of small shallow ephemeral pan at Bain's Vlei, South Africa — Hydrobiologia, 317: 51–64.
  • [39] Pajunen V. I. 1990 — The population dynamics of rock-pool corixids living on supplementary food (Hemiptera, Corixidae) — Ann. Zool. Fenn. 27: 337–350.
  • [40] Pandit S. N. , Kolasa J. , Cottenie K. 2009 — Contrasts between habitat generalists and specialists: an empirical extension to the basic metacommunity framework — Ecology, 90: 2253–2262.
  • [41] Pellowe-Wagstaff K. E. , Simonis J. L. 2014 — The ecology and mechanisms of overflow-mediates dispersal in a rock-pool metacommunity — Freshwat. Biol. 59: 1161–1172.
  • [42] Philippi T. E. , Simovich M. A. , Bauder E. T. , Moorad J. A. 2001 — Habitat ephemerality and hatching fractions of a diapausing anostracan (Crustacea: Branchiopoda) — Isr. J. Zool. 47: 387–395.
  • [43] Poole G. C. 2002 — Fluvial landscape ecology: addressing uniqueness within the river discontinuum — Freshwat. Biol. 47: 641–660.
  • [44] Ranta E. 1982 — Animal communities in rock pools — Ann. Zool. Fenn. 19: 337–347.
  • [45] Scheiner S. M. 2003 — Six types of species — area curves — Global Ecol. Biogeogr. 12: 441–447.
  • [46] Schenk K. , Suhling F. , Martens A. 2004 — Egg distribution, mate-guarding intensity and offspring characteristics in dragonflies (Odonata) — Anim. Behav. 68: 599–606.
  • [47] Scheffer M. , van Geest G. J. , Zimmer K. , Jeppesen E. , Sondergaard M. , Butler M. G. , Hanson M. A. , Declerck S. , De Meester L. 2006 — Small habitat size and isolation can promote species richness: second-order effects on biodiversity in shallow lakes and ponds — Oikos, 112: 227–231.
  • [48] Serrano L. , Fahd K. 2005 — Zooplankton communities across a hydroperiod gradient of temporary ponds in the Donana National Park (SW Spain) — Wetlands, 25: 101–111.
  • [49] Spencer M. , Blaustein L. , Schwartz S. S. , Cohen J. E. 1999 — Species richness and the proportion of predatory animal species in temporary freshwater pools: relationships with habitat size and permanence — Ecol. Lett. 2: 157–166.
  • [50] Srivastava D. S. , Kolasa J. , Bengtsson J. , Gonzalez A. , Lawler S. P. , Miller T. E. , Munguia P. , Romanuk T. , Schneider D. C. , Trzcinski M. K. 2004 — Are natural microcosms useful model systems for ecology? — Trends Ecol. Evol. 19: 379–384.
  • [51] ter Braak C. J. F. , Šmilauer P. 2002 — Program CANOCO for Windows. Version 4.5. Biometris, Plant Research International, Wageningen University and Research Centre, Wageningen, The Netherlands.
  • [52] Therriault T. W. , Kolasa J. 2001 — Desiccation frequency reduces species diversity and predictability of community structure in coastal rock pools — Isr. J. Zool. 47: 477–489.
  • [53] Tjørve E. 2003 — Shapes and functions of species-area curves, a review of possible models — J. Biogeogr. 30: 827–835.
  • [54] Tjørve E. 2009 — Shapes and functions of species-area curves (II), a review of new models and parameterizations — J. Biogeogr. 36: 1435–1445.
  • [55] Ulrich W. , Buszko J. 2005 — Detecting biodiversity hotspots using species — area and endemics — area relationships: The case of butterflies — Biodiv. Cons. 14: 1977–1988.
  • [56] Ulrich W. , Zalewski M. , Hajdamowicz I. , Stańska M. , Ciurzycki W. , Tykarski P. 2013 — Towards a general species-time-area-sampling effort relationship — Pol. J. Ecol. 62: 345–354.
  • [57] Underwood A. J. , Denley E. J. 1984 — Paradigms, explanations and generalizations in models for the structure of intertidal communities on rocky shores (In: Ecological Communities: conceptual issues and the evidence, Eds: D. R. Strong , D. Simberloff , L. G. Abele , A. Thistle ) — Princeton University Press, Princeton, New Jersey, pp. 151–180.
  • [58] Vanschoenwinkel B. , Vries C. D. , Seaman M. , Brendonck L. 2007 — The role of metacommunity processes in shaping invertebrate rock pool communities along a dispersal gradient — Oikos, 116: 1255–1266.
  • [59] Vanschoenwinkel B. , Hulsmans A. , Roeck E. D. , Veies C. D. , Seaman M. , Brendonck L. 2009 — Community structure in temporary freshwater pools: disentangling the effects of habitat size and hydroregime — Freshwat. Biol. 54: 1487–1500.
  • [60] Ward J. V. , Stanford J. A. 1979 — Ecological factors controlling stream zoobenthos with emphasis on thermal modification of regulated streams — Ecol. Regul. Streams, pp. 35–53.
  • [61] Ward D. W. , Blaustein L. 1994 — The overriding influence of flash floods on species-area curves in ephemeral Negev Desert pools: a consideration of the value of island biogeography theory — J. Biogeogr. 21: 595–603.
  • [62] Wellborn G. A. , Skelly D. K. , Werner E. E. 1996 — Mechanisms creating community structure across a freshwater habitat gradient — Ann. Rev. Ecol. Syst. 27: 337–363.
  • [63] Williams D. D. 2006 — The Biology of Temporary Waters — Oxford University Press, Oxford, United Kingdom.
  • [64] Wissinger S. A. , Bohonak A. J. , Whiteman H. H. , Brown W. S. 1999 — Subalpine wetlands in Colorado: habitat permanence, salamander predation, and invertebrate communities (In: Invertebrates in Freshwater Wetlands of North America: Ecology and Management, Eds: D. P. Batzer , R. B. Rader , S. A. Wissinger ) — Wiley, New York, pp. 757–790.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2196aec3-c30d-4c1b-bb57-719f23825be5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.