Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 18, no 2 | 143--158
Tytuł artykułu

The Influence of Cold Deformation and Annealing on Texture Changes in Austenitic Stainless Steel

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Austenitic stainless steels are widely used in industry, from heavy industry and power generation to precision mechanics and electronics, accounting for about 2/3 of the stainless steels produced. The stability of austenite influences the properties and behaviour of these steels during deformation and annealing. This paper presents the results of research into austenitic metastable phase X5CrNi1810 steel, which was subjected to cold rolling (in the range of 5 to 80%) and then annealing (at temperatures of 500-900°C). The research focused mainly on changes in crystallographic texture parameters occurring during the analysed processes. It was found that the observed development of the deformation texture is complex due to the fact that several processes take place simultaneously. Namely, the deformation of austenite, the transformation of austenite into martensite, and the deformation of the resulting martensite. The texture of the deformed austenite was similar to the texture of the alloy type {112}<110>. After 80% deformation, the Goss-type {110}<001> texture component showed the highest intensity. The lack of {112}<111> orientation in the texture was due to the fact that this orientation changes to the {112}<110> martensite orientation as a result of the γ→α’ phase transition. Annealing of the deformed steel at 500°C led to an increase in the degree of texturing (sharpening of the texture), which was related to the improvement of the texture in this temperature range. Above 600°C, the degree of texturing decreased, which is directly related to the α’→γ reverse transformation and the subsequent recrystallization process. Magnetic studies indicate an increasing proportion of the magnetic phase α’ (martensite) together with an increasing degree of deformation. For deformation of 80%, the amount of magnetic phase reached a value of more than 33%. However, after annealing at a temperature of 800°C, there is no martensite in the structure, which indicates that, in these heat treatment conditions, the complete reverse transformation of martensite into austenite has already taken place.
Wydawca

Rocznik
Strony
143--158
Opis fizyczny
Bibliogr. 48 poz., fig., tab.
Twórcy
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Kraków, Poland, joannak@agh.edu.pl
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Kraków, Poland, witkowsk@agh.edu.pl
Bibliografia
  • 1. Lamb S. ed. Casti Handbook of Stainless steel and nickel alloys, Publisher: CASTI Publishing Inc., Canada, 2000.
  • 2. Stainless Steel Market Size, Share & Trends Analysis Report By Grade (300 Series, Duplex Series), By Product (Flat, Long), By Application (Building & Construction, Consumer Goods), By Region, And Segment Forecasts, 2024-2030.
  • 3. Jeong J., Lee Y., Jeong Min Parkb J.M., Leec D.C., Jeond I., Sohnd H., Kimb H.S., Nama T.-H., Sunga H., Jae Bok Seola J.B., Jung Gi Kim J.G. Metastable δ-ferrite and twinning-induced plasticity on the strain hardening behavior of directed energy deposition-processed 304L austenitic stainless steel. Addit. Manuf. 2021; 47: 102363. https://doi.org/10.1016/j.addma.2021.102363.
  • 4. Simmons J.W. High-nitrogen alloying of stainless steels. Mater. Sci. Eng. A 1996; 207: 159-69.
  • 5. Yuan Z.Z., Dai Q.X., Cheng X.N., Chen K.M., Pan L., Wang A.D. In situ SEM tensile test of highnitrogen austenitic stainless steels. Mater. Charact. 2006; 56: 79–83. https://doi.org/10.1016/j.matchar.2005.09.013.
  • 6. Angel T. Formation of martensite in austenitic stainless steels effect of deformation, temperature and composition. J. Iron and Steel Inst. 1954; 177: 165–174.
  • 7. Ali S., Irfan M., Niazi U.M., Rani A.M.A., Rashedi A., Rahman S., Khan M.K.A., Alsaiari M.A., Legutko S., Petrů J., Trefil A. Microstructure and mechanical properties of modified 316L stainless steel alloy for biomedical applications using powder metallurgy. Materials. 2022; 15: 2822. https://doi.org/10.3390/ma15082822.
  • 8. Maziasz P.J., Busby J.T. Properties of austenitic steels for nuclear reactor applications. Comprehensive Nuclear Materials. 2012; 2: 267–283. https://doi.org/10.1016/B978-0-08-056033-5.00019-7.
  • 9. Szala M., Beer-Lech K., Walczak M. A study on the corrosion of stainless steel floor drains in an indoor swimming pool. Eng. Fail. Anal. 2017; 77: 31–38. http://dx.doi.org/10.1016/j.engfailanal.2017.02.014.
  • 10. Walczak M. Surface characteristics and wear resistance of 316L stainless steel after different shot peening parameters. ASTRJ 2023; 17(3): 124–132. https://doi.org/10.12913/22998624/165800.
  • 11. Skoczylas A. Vibratory shot peening of elements cut with abrasive water jet. ASTRJ. 2022; 16(2): 39–49. https//doi.org/10.12913/22998624/146272.
  • 12. Padilha A.F., Rios P.R. Decomposition of austenite in austenitic stainless steels. ISIJ Int. 2002; 42(4): 325–337. https://doi.org/10.2355/isijinternational.42.325.
  • 13. Ganesh Sundara Raman S., Padmanabhan K.A. Tensile deformation-induced martensitic transformation in AISI 304LN austenitic stainless steel. J. Mater. Sci. Lett. 1994; 13: 389–392.
  • 14. Lecroisey F., Pineau A. Martensitic transformations induced by plastic deformation in the Fe-Ni-Cr-C system. Metall. Trans. 1972; 3: 387–396.
  • 15. Luo C., Yuan H. Measurement and modeling of deformation-induced martensitic transformation in a metastable austenitic stainless steel under cyclic loadings. Acta Mater. 2022; 238: 118202. https://doi.org/10.1016/j.actamat.2022.118202.
  • 16. Gräsel O., Krüger L., Frommeyer G., Meyer L.W. High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development-properties-application. Int. J. of Plast. 2000; 16: 1391–1409. https://doi.org/10.1016/S0749-6419(00)00015-2.
  • 17. Kowalska J., Ryś J., Cempura G. Complex structural effects in deformed high-manganese steel. Materials 2021; 14(22): 6935. https://doi.org/10.3390/ma14226935.
  • 18. Frommeyer G., Brüx U., Neumann P. Supra-ductile and high-strength manganese - TRIP/TWIP steels for high energy absorption purposes. ISIJ Int. 2003; 43: 438–446. https://doi.org/10.2355/isijinternational.43.438.
  • 19. Braga D.P, Corrêa L.M., Sordi V.L, Rovere C.A.D, Cintho O.M., Kliauga A.M. Influence of temperature and stress state on the TWIP behavior of 201LN and 316LV austenitic stainless steels. Mater. Sci. Eng. A. 2023; 863: 144527. https://doi.org/10.1016/j.msea.2022.144527.
  • 20. Guo Y., Zhang S., Chen J., Fu B., Wang Z., Pang L., Wei L., Li Y., Ding Y. The contribution of retained martensite to the high yield strength and sustainable strain hardening of a hierarchical metastable austenitic stainless steel. Mater. Sci. Eng. A. 2023; 866: 144681. https://doi.org/10.1016/j.msea.2023.144681.
  • 21. Hu Ch., He Ch, Zhu X., Dong H., Wan X., Li G., Wu K. The significant role of bimodal lamellar heterostructure for Lüders deformation and TRIP effect in 18Cr–8Ni austenitic stainless steel. Mater. Sci. Eng. A. 2023; 887: 145748. https://doi.org/10.1016/j.msea.2023.145748.
  • 22. He Y., Gao J., He Y., Shin K. A new fcc-bcc orientation relationship observed in the strain-induced martensitic transformation of an austenitic stainless steel. Mater. Lett. 2021; 305: 130735. https://doi.org/10.1016/j.matlet.2021.130735.
  • 23. Ravi Kumar B., Mahato B., Bandyopadhyay N.R., Bhattacharya D.K. Comparison of rolling texture in low and medium stacking fault energy austenitic stainless steels. Mater. Sci. Eng. A. 2005; 394: 296–301. https://doi.org/10.1016/j.msea.2004.11.057.
  • 24. Ravi Kumar B., Singh A.K., Das S., Bhattacharya D.K. Cold rolling in AISI 304 stainless steel. Mater. Sci. Eng. A. 2004; 364: 132–139. https://doi.org/10.1016/j.msea.2003.08.012.
  • 25. Padilha A.F., Plaut R.L., Rios P.R. Annealing of cold-worked austenitic stainless steels. ISIJ Int. 2003; 43(2): 135–143. https://doi.org/10.2355/isijinternational.43.135.
  • 26. Hübner W. Phase transformations in austenitic stainless steels during low temperature tribological stressing. Tribol. Int. 2001; 34(4): 231–236. https://doi.org/10.1016/S0301-679X(01)00006-8.
  • 27. Kowalska J., Ryś J., Cios G., Bednarczyka W. The effect of reduced temperatures on microstructure development in tensile tested high-manganese steel. Mater. Sci. Eng. A. 2018; 767: 138406. https://doi.org/10.1016/j.msea.2019.138406.
  • 28. Fang X.-H., Yang P., Lu F.-Y., Meng L. Dependence of deformation twinning on grain orientation and texture evolution of high manganese TWIP steels at different deformation temperatures. J. Iron Steel Res. Int. 2011; 18(11), 46–52. https://doi.org/10.1016/S1006-706X(11)60116-7.
  • 29. Bokros J.C., Parker E.R. The mechanism of the martensite burst transformation in Fe Ni single crystals. Acta Metall. 1963; 11(12): 1291–1301. https://doi.org/10.1016/0001-6160(63)90024-5.
  • 30. Higo Y., Lecroisey F., Mori T. Relation between applied stress and orientation relationship of α′ martensite in stainless steel single crystals, Acta Metall. 1974; 22(3), 313–323. https://doi.org/10.1016/0001-6160(74)90170-9.
  • 31. Byun T.S., Hashimoto N., Farrell K. Temperature dependence of strain hardening and plastic instability behaviors in austenitic stainless steels. Acta Mater. 2004; 52 (13): 3889–3899. https://doi.org/10.1016/j.actamat.2004.05.003.
  • 32. Spencer K., Embury J.D., Conlon K.T., Véron M., Bréchet Y. Strengthening via the formation of strain-induced martensite in stainless steel. Mater. Sci. Eng. A. 2004: 387-389: 873–881. https://doi.org/10.1016/j.msea.2003.11.084.
  • 33. Tavares S.S.M., Gunderov D., Stolyarov V., Neto, J.M. Phase transformation induced by severe plastic deformation in the AISI 304L stainless steel, Mater. Sci. Eng. A. 2003; 358: 32–36. https://doi.org/10.1016/S0921-5093(03)00263-6.
  • 34. Tomimura K., Takaki S., Tokunaga Y. Reversion mechanism from deformation induced martensite to austenite in metastable austenitic stainless steel, ISIJ Int. 1991; 31(12): 1431–1437. https://doi.org/10.2355/isijinternational.31.1431.
  • 35. Bunsch A., Kowalska J., Chruściel K. Texture and microstructure of annealed AISI 302 steels wire. Arch. Metall. Mater. 2008; 53(1): 125–130.
  • 36. Tomimura K., Takaki S., Tanimoto S. Optimal chemical composition in Fe-Cr-Ni alloys for ultra grain refining by reversion from deformation induced martensite, ISIJ Int. 1991; 31(7): 721–727. https://doi.org/10.2355/isijinternational.31.721.
  • 37. Martins L.F.M., Plaut R.L., Padilha A.F. Effect of carbon on cold-worked state and annealing behaviour of two 18wt%Cr-8wt%Ni austenitic stainless steels. ISIJ Int. 1998; 38(6): 572-579. https://doi.org/10.2355/isijinternational.38.572.
  • 38. Tavares S.S.M., Fruchart D., Miraglia S. A magnetic study of the reversion of martensite α’ in a 304 stainless steel. J. Alloys Compd. 2000; 307: 311–317. https://doi.org/10.1016/S0925-8388(00)00874-4.
  • 39. Takaki S., Tomimura K., Ueda S. Effect of precold-working on diffusional reversion of deformation in metastable austenitic stainless steel. ISIJ Int. 1994; 34(6): 522–527. https://doi.org/10.2355/isijinternational.34.522.
  • 40. Heye W., Wassermann G. The formation of the rolling textures of FCC metals by slip and twinning, Scripta Metall. 1968; 2: 693-697. https://doi.org/10.1016/0036-9748(68)90228-7.
  • 41. Chowdhury S.G., Das S., Ravi Kumar B., Kumar S., Gottstein G. Textural development in AISI 316 stainless steel during cold rolling and annealing. Materials Science Forum 2002; 408-412: 1371–1376. DOI:10.4028/WWW.SCIENTIFIC.NET/MSF.408-412.1371
  • 42. Donadille C., Valle R., Dervin P. ,Penelle R. Development of texture and microstructure during coldrolling and annealing of FCC alloys: Example of austenitic stainless steel. Acta Metall. 1989; 37(6): 1547-1571. DOI:10.1016/0001-6160(89)90123-5.
  • 43. Raabe D. Texture and microstructure evolution during cold rolling of a strip cast and of hot rolled austenitic stainless steel. Acta Mater. 1997; 45(3): 1137–1151. https://doi.org/10.1016/S1359-6454(96)00222-4.
  • 44. Nie Z., Li Y., Wang Y. Mechanical properties of steels for cold-formed steel structures at elevated temperatures. Adv. Civ. Eng. 2020; ID 9627357: 1-18. https://doi.org/10.1155/2020/9627357.
  • 45. Skrzypek S.J., Bergmark A., Goły M. Structural characterization of surface layers in sintered DistaloyAE and DistaloyHP. Mater. Eng. 2013; 4 (194): 370–373.
  • 46. Li S., Withers P.J., Kabra S., Yan K. The behaviour and deformation mechanisms for 316L stainless steel deformed at cryogenic temperatures. Mater. Sci. Eng. A. 2023; 880: 145279. https://doi.org/10.1016/j.msea.2023.145279.
  • 47. Ma D.D., Yang P., Gu X.F., Cui F. Influences of initial microstructures on martensitic transformation and textures during cold rolling and tensile mechanical properties in high manganese TRIP steel. Mater. Sci. Eng. A. 2022; 829: 142147. https://doi.org/10.1016/j.msea.2021.142147.
  • 48. Yushkov V.I., Adamescu R.A., Machnev Y.S., Gapeka T.M., Geld P.V. The developments in texture in stainless steel. Mater. Sci. Eng. 1984; 64: 157–169.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-218a5b18-8eea-4c3a-a48d-33b7abf3c864
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.