Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | Vol. 21, nr 4(70) | 79--89
Tytuł artykułu

Effect of Fe-Ni substitution in FeNiSiB soft magnetic alloys produced by melt spinning

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Alloys of FeNiSiB soft magnetic materials containing variable Fe and Ni contents (wt.%) have been produced by melt spinning method, a kind of rapid solidification technique. The magnetic and structural properties of FeNiSiB alloys with soft magnetic properties were investigated by increasing the Fe ratio. X-ray diffraction analysis and SEM images shows that the produced alloy ribbons generally have an amorphous structure, together with also partially nanocrystalline regions. It was observed that the structure became much more amorphous together with increasing Fe content in the composition. Among the alloy ribbons, the highest saturation magnetization was obtained as 0.6 emu/g in the specimen with 50 wt.% Fe. In addition, the highest Curie temperature was observed in the sample containing 46 wt.% Fe.
Wydawca

Rocznik
Strony
79--89
Opis fizyczny
Bibliogr. 51, il., wykr., tab., fot.
Twórcy
  • Department of Fundamental Sciences and Engineering, Sivas University of Science and Technology, Sivas, Turkey, fatihkilicaslan@sivas.edu.tr
  • Department of Aeronautical Engineering, Sivas University of Science and Technology, Sivas, Turkey
  • Department of Aeronautical Engineering, Sivas University of Science and Technology, Sivas, Turkey
  • Department of Materials Sciences and Engineering, Kastamonu University, Kastamonu, Turkey
  • Department of Biomedical Engineering, Kastamonu University, Kastamonu, Turkey
Bibliografia
  • 1. I.A. Figueroa, I. Betancourt, G. Lara, J.A. Verduzco, Effect of B, Si and Cr on the mechanical properties of Fe-based amorphous metallic ribbons, J. Non. Cryst. Solids. 351 (2005) 3075–3080. https://doi.org/10.1016/j.jnoncrysol.2005.07.017.
  • 2. L. Guo, S. Geng, X. Gao, W. Wang, Numerical simulation of heat transfer and fluid flow during nanosecond pulsed laser processing of Fe78Si9B13 amorphous alloys, Int. J. Heat Mass Transf. 170 (2021). https://doi.org/10.1016/j.ijheatmasstransfer.2021.121003.
  • 3. A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Mater. 48 (2000) 279–306. https://doi.org/10.1016/S1359-6454(99)00300-6.
  • 4. S. Cui, H. Zhai, W. Li, X. Fan, X. Li, W. Ning, D. Xiong, Microstructure and corrosion resistance of Fe-based amorphous coating prepared by detonation spray, Surf. Coat. Technol. 399 (2020) 126096. https://doi.org/10.1016/j.surfcoat.2020.126096.
  • 5. M.F. Kilicaslan, S.I. Elburni, B. Akgul, The effects of nb addition on the microstructure and mechanical properties of melt spun Al-7075 alloy, Adv. Mater. Sci. 21 (2021) 17–19. https://doi.org/10.2478/adms-2021-0008.
  • 6. L. Zhu, S.S. Jiang, Z.Z. Yang, G.B. Han, S.S. Yan, Y.G. Wang, Magnetic properties of a Fe-based amorphous alloy with stress gradient, J. Magn. Magn. Mater. 519 (2021) 167513. https://doi.org/10.1016/j.jmmm.2020.167513.
  • 7. C. Chang, T. Kubota, A. Makino, A. Inoue, Synthesis of ferromagnetic Fe-based bulk glassy alloys in the Fe–Si–B–P–C system, J. Alloys Compd. 473 (2009) 368–372. https://doi.org/10.1016/j.jallcom.2008.05.088.
  • 8. A. Makino, H. Men, T. Kubota, K. Yubota, A. Inoue, FeSiBPCu nanocrystalline soft magnetic alloys with high Bs of 1.9 Tesla produced by crystallizing hetero-amorphous phase, Mater. Trans. 50 (2009) 204-209. https://doi.org/10.2320/matertrans.MER2008306.
  • 9. P. Duwez, R. H. Willens, W. Klement, Continuous Series of Metastable Solid Solutions in Silver Copper Alloys, J. Appl. Phys. 31 (1960) 1136. https://doi.org/10.1063/1.1735777.
  • 10. X. Jia, Y. Li, L. Wu, W. Zhang, A study on the role of Ni content on structure and properties of Fe-Ni-Si-B-P-Cu nanocrystalline alloys, J. Alloys Compd. 822 (2020) 152784. https://doi.org/10.1016/j.jallcom.2019.152784.
  • 11. M. Ohta, Y. Yoshizawa, Cu addition effect on soft magnetic properties in Fe-Si-B alloy system, J. Appl. Phys. 103 (2008) 07E722. 722 (2015). https://doi.org/10.1063/1.2829240.
  • 12. Y. Zhang, P. Sharma, A. Makino, Effects of cobalt addition in nanocrystalline Fe83.3Si4B8P4Cu0.7 soft magnetic alloy, IEEE Trans. Magn. 50 (2014) 2003004.
  • 13. A. Inoue, A. Takeuchi, T. Zhang, Ferromagnetic bulk amorphous alloys, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 29 (1998) 1779–1793. https://doi.org/10.1007/s11661-998-0001-9.
  • 14. C. Si, Z. Zhang, Q. Zhang, J. Cai, Influence of mechanical alloying on the particle size, microstructure and soft magnetic properties of coarse Fe-based amorphous powders prepared by gas atomization, J. Non. Cryst. Solids. 559 (2021) 120675. https://doi.org/10.1016/j.jnoncrysol.2021.120675.
  • 15. S. Cui, G. Ouyang, T. Ma, C. R. Macziewski, V. I. Levitas, L. Zhou, M. J. Kramer, J. Cui, Thermodynamic and kinetic analysis of the melt spinning process of Fe-6.5 wt.% Si alloy, J. Alloys Compd. 771 (2019) 643–648. https://doi.org/10.1016/J.JALLCOM.2018.08.293.
  • 16. Y.F. Liang, S. Wang, H. Li, Y.M. Jiang, F. Ye, J. P. Lin, Fabrication of Fe-6.5wt%Si Ribbons by Melt Spinning Method on Large Scale, Adv. Mater. Sci. Eng. 2015 (2015). https://doi.org/10.1155/2015/296197.
  • 17. S. Wang, Y. M. Jiang, Y. F. Liang, F. Ye, J. P. Lin, Magnetic properties and core loss behavior of Fe-6.5wt.%Si ribbons prepared by melt spinning, Adv. Mater. Sci. Eng. 2015 (2015). https://doi.org/10.1155/2015/410830.
  • 18. M. Imani, M. H. Enayati, Investigation of amorphous phase formation in Fe-Co-Si-B-P- Thermodynamic analysis and comparison between mechanical alloying and rapid solidification experiments, J. Alloys Compd. 705 (2017) 462–467. https://doi.org/10.1016/j.jallcom.2017.02.100.
  • 19. A. Inoue, T. Masumoto, Mg-based amorphous alloys, Mater. Sci. Eng. A. 173 (1993) 1–8. https://doi.org/10.1016/0921-5093(93)90175-E.
  • 20. T. Tamura, M. Li, Influencing factors on the amorphous phase formation in Fe–7.7 at% Sm alloys solidified by high-speed melt spinning, J. Alloys Compd. 826 (2020) 154010. https://doi.org/10.1016/j.jallcom.2020.154010.
  • 21. G. Ennas, M. Magini, F. Padella, P. Susini, G. Boffitto, G. Licheri, Preparation of amorphous Fe-Zr alloys by mechanical alloying and melt spinning methods - Part 1 A structural comparison, J. Mater. Sci. 24 (1989) 3053–3058. https://doi.org/10.1007/BF01139017.
  • 22. C. Wu, K. Lin, Y. Cheng, C. Huang, C. Pan, W. Li, L. Chiang, C. Yeh, S. Fong, Development of Amorphous Ribbon Manufacturing Technology, China Steel Tech. Rep. (2014) 28–42.
  • 23. G. Herzer, Modern soft magnets: Amorphous and nanocrystalline materials, Acta Mater. 61 (2013) 718–734. https://doi.org/10.1016/j.actamat.2012.10.040.
  • 24. X. D. Fan, B.L. Shen, Crystallization behavior and magnetic properties in High Fe content FeBCSiCu alloy system, J. Magn. Magn. Mater. 385 (2015) 277–281. https://doi.org/10.1016/j.jmmm.2015.03.033.
  • 25. N. Yodoshi, S. Ookawa, R. Yamada, N. Nomura, K. Kikuchi, A. Kawasaki, Effects of nanocrystallisation on saturation magnetisation of amorphous Fe76Si9B10P5, Mater. Res. Lett. 6 (2018) 100–105. https://doi.org/10.1080/21663831.2017.1398191.
  • 26. K. Suzuki, R. Parsons, B. Zang, K. Onodera, H. Kishimoto, T. Shoji, A. Kato, Nano-crystallization of amorphous alloys by ultra-rapid annealing: An effective approach to magnetic softening, J. Alloys Compd. 735 (2018) 613–618. https://doi.org/10.1016/j.jallcom.2017.11.110.
  • 27. T. Kulik, Nanocrystallization of metallic glasses, J. Non. Cryst. Solids. 287 (2001) 145–161. https://doi.org/10.1016/S0022-3093(01)00627-5.
  • 28. B. A. Luciano, C. S. Kiminami, An amorphous core transformer: Design and experimental performance, Mater. Sci. Eng. A. 226–228 (1997) 1079–1082. https://doi.org/10.1016/s0921-5093(96)10863-7.
  • 29. F. Wan, T. Liu, F. Kong, A. Wang, M. Tian, J. Song, J. Zhang, C. Chang, X. Wang, Surface crystallization and magnetic properties of FeCuSiBNbMo melt-spun nanocrystalline alloys, Mater. Res. Bull. 96 (2017) 275–280. https://doi.org/10.1016/j.materresbull.2017.01.026.
  • 30. Y. Yoshizawa, S. Oguma, K. Yamauchi, New Fe-based soft magnetic alloys composed of ultrafine grain structure, J. Appl. Phys. 64 (1988) 6044–6046. https://doi.org/10.1063/1.342149.
  • 31. J. G. Wang, H. Zhao, C. X. Xie, C. T. Chang, S. M. Zhou, J. Q. Feng, J. T. Huo, W. H. Li, In-situ synthesis of nanocrystalline soft magnetic Fe-Ni-Si-B alloy, J. Alloys Compd. 790 (2019) 524–528. https://doi.org/10.1016/j.jallcom.2019.03.226.
  • 32. E. Dastanpour, M. H. Enayati, A. Masood, V. Ström, Crystallization behavior, soft magnetism and nanoindentation of Fe-Si-B-P-Cu alloy on Ni substitution, J. Alloys Compd. 851 (2021) 156727. https://doi.org/10.1016/j.jallcom.2020.156727.
  • 33. Z. Li, Y. Wu, B. Zhuang, X. Zhao, Y. Tang, X. Ding, Preparation of novel copper-powder-sintered frame / para ffi n form-stable phase change materials with extremely high thermal conductivity, Appl. Energy. 206 (2017) 1147–1157. https://doi.org/10.1016/j.apenergy.2017.10.046.
  • 34. V. I. Tkatch, A. I. Limanovskii, S. N. Denisenko, S. G. Rassolov, The effect of the melt-spinning processing parameters on the rate of cooling, Mater. Sci. Eng. A. 323 (2002) 91–96. https://doi.org/10.1016/S0921-5093(01)01346-6.
  • 35. O. Uzun, M. F. Kılıçaslan, F. Yılmaz, Formation of novel flower-like silicon phases and evaluation of mechanical properties of hypereutectic melt-spun Al- 20Si-5Fe alloys with addition of V, Mater. Sci. Eng. A. 607 (2014) 368–375. https://doi.org/10.1016/j.msea.2014.04.025.
  • 36. M. Çelebi, O. Güler, A. Çanakçı, H. Çuvalcı, The effect of nanoparticle content on the microstructure and mechanical properties of ZA27-Al2O3-Gr hybrid nanocomposites produced by powder metallurgy, J. Compos. Mater. 55 (2021) 3395–3408. https://doi.org/10.1177/00219983211015719.
  • 37. A. H. Karabacak, A. Çanakçı, F. Erdemir, S. Özkaya, M. Çelebi, Effect of different reinforcement on the microstructure and mechanical properties of AA2024-based metal matrix nanocomposites, Int. J. Mater. Res. 111 (2020) 416–423. https://doi.org/10.3139/146.111901.
  • 38. A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Mater. 48 (2000) 279-306. https://doi.org/10.1016/S1359-6454(99)00300-6.
  • 39. Y. L. Li, Z. X. Dou, X. M. Chen, K. Lv, F. S. Li, X.D. Hui, Improving the amorphous forming ability and magnetic properties of FeSiBPCu amorphous and nanocrystalline alloys by utilizing carbon, J. Alloys Compd. 844 (2020). https://doi.org/10.1016/j.jallcom.2020.155767.
  • 40. A. Inoue, A. Takeuchi, T. Zhang, A. Murakami, Soft Magnetic Properties of Bulk Fe-Based Amorphous Alloys Prepared by Copper Mold Casting, IEEE Trans. Magn. 32 (1996) 4866–4871.
  • 41. A. Takeuchi, A. Inoue, Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element, Mater. Trans. 46 (2005) 2817-2829. https://doi.org/10.2320/matertrans.46.2817.
  • 42. M. Ipatov, V. Zhukova, L. Dominguez, K.L. Alvarez, A. Chizhik, A. Zhukov, J. Gonzalez, Structural and low-temperature magnetic properties of as-quenched and annealed Ni–Si–B alloys produced by rapid solidification, Intermetallics. 132 (2021) 107140. https://doi.org/10.1016/j.intermet.2021.107140.
  • 43. B. Q. Chi, C. Li, Z.H. Huang, Mixing entropy difference between liquid and crystal of Fe base amorphous alloys, J Non Cryst Solids. 402 (2014) 178–181. https://doi.org/10.1016/j.jnoncrysol.2014.05.032.
  • 44. L. Shi, X. Qin, K. Yao, Tailoring soft magnetic properties of Fe-based amorphous alloys through C addition, Prog. Nat. Sci. Mater. Int. 30 (2020) 208–212. https://doi.org/10.1016/j.pnsc.2020.02.001.
  • 45. Q. Liu, H. Liu, M. Wang, Y. Zhang, Z. Ma, Y. Zhao, W. Yang, Effects of Ni substitution for Fe on magnetic properties of Fe80 − xNixP13C7 ( x = 0-30 ) glassy ribbons, J. Non. Cryst. Solids. 463 (2017) 68–71. https://doi.org/10.1016/j.jnoncrysol.2017.03.005.
  • 46. J. Zhou, W. Yang, C. Yuan, B. Sun, B. Shen, Ductile FeNi-based bulk metallic glasses with high strength and excellent soft magnetic properties, J. Alloys Compd. 742 (2018) 318–324. https://doi.org/10.1016/j.jallcom.2018.01.317.
  • 47. H. R. Lashgari, D. Chu, S. Xie, H. Sun, M. Ferry, S. Li, Composition dependence of the microstructure and soft magnetic properties of Fe-based amorphous/nanocrystalline alloys: A review study, J. Non-Cryst. Solids. 391 (2014) 61–82. https://doi.org/10.1016/j.jnoncrysol.2014.03.010.
  • 48. T. Mizoguchi, K. Yamauchi, H. Miyajima, Ferromagnetism of Amorphous Iron Alloys. Proceedings of the International Symposium on Amorphous Magnetism, Detroit, Michigan, USA, 1973, 325–330. https://doi.org/10.1007/978-1-4613-4568-8_35.
  • 49. W. Yang, H. Liu, L. Xue, J. Li, C. Dun, J. Zhang, Magnetic properties of (Fe1-xNix)72B20Si4Nb4 (x=0.0–0.5) bulk metallic glasses, J. Magn. Magn. Mater. 335 (2013) 172–176. https://doi.org/10.1016/j.jmmm.2013.02.004.
  • 50. W. Yang, H. Liu, Y. Zhao, A. Inoue, K. Jiang, J. Huo, H. Ling, Q. Li, B. Shen, Mechanical properties and structural features of novel Fe-based bulk metallic glasses with unprecedented plasticity, Sci. Rep. 6233 (2014) 1-6. https://doi.org/10.1038/srep06233.
  • 51. A. Mitra, R.K. Roy, B. Mahato, A.K. Panda, G. Vlasak, D. Janickovic, P. Svec, Development of FeSiB/CoSiB Bilayered Melt-spun Ribbon by Melt-spinning Technique, J. Supercond. Nov. Magn. 2010 241. 24 (2010) 611–615. https://doi.org/10.1007/S10948-010-0955-X.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-215d7d63-d9bc-49b4-81e2-7f22108ab7bb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.