Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | Vol. 39, No. 1 | 1-14
Tytuł artykułu

Finite element modeling of continuous drive friction welding of Al6061 alloy

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Continuous drive friction welding process is widely used in various industrial applications to assemble shafts, tubes, and many other components. This paper's motivation was developing a CDFW model using the Finite Element Method (FEM). The coupling of the process's thermal and mechanical behaviors was considered during the simulation by COMSOL Multiphysics®. The construction of phase transition curves for Al6061 allowed determining several temperature-dependent thermophysical properties of the material. These properties are then injected in a second simulation to study the temperature evolution during welding. Subsequently, these results are compared and analyzed with the experimental outcomes. Excellent comparability between the model and experimental results was achieved. A unique phenomenon in the welding temperature profile was observed and explained through the model and experimental results interpretation.
Wydawca

Rocznik
Strony
1-14
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
Bibliografia
  • [1] Sahin M. Joining of aluminium and copper materials with friction welding, Int J Adv Manuf Technol. 2010;49(5-8):527–34. https://doi.org/10.1007/s00170-009-2443-7.
  • [2] Yilbas BS, Sahin AZ, Coban A, Abdul Aleem BJ. Investigation into the properties of friction-welded aluminium bars, J Mater Process Technol. 1995;54(1-4):76–81. https://doi.org/10.1016/0924-0136(95)01923-5.
  • [3] Yang YC, Chen WL, Lee HL. A Nonlinear Inverse Problem in Estimating the Heat Generation in Rotary Friction Welding, Numer Heat Transf A. 2011;59(2):130–49. https://doi.org/10.1080/10407782.2011.540965.
  • [4] Schmicker D, Persson P, Strackeljan J. Implicit Geometry Meshing for the simulation of Rotary Friction Welding, J Comput Phys. 2014;270:478–89. https://doi.org/10.1016/j.jcp.2014.04.014.
  • [5] Li W, Wang F. Modeling of continuous drive friction Welding of mild steel, Mater Sci Eng A. 2011;528(18):5921–6. https://doi.org/10.1016/j.msea.2011.04.001.
  • [6] Kalsi NS, Sharma VS. A statistical analysis of rotary friction welding of steel with varying carbon in workpieces, Int J Adv Manuf Technol. 2011;57(9-12):957–67. https://doi.org/10.1007/s00170-011-3361-z.
  • [7] Nguyen TC, Weckman DC. A thermal and microstructure evolution model of direct-drive friction welding of plain carbon steel, Metall Mater Trans, B, Process Metall Mater Proc Sci. 2006;37(2):275–92. https://doi.org/10.1007/BF02693157.
  • [8] Maalekian M, Kozeschnik E, Brantner HP, Cerjak H. Comparative analysis of heat generation in friction welding of steel bars, Acta Mater. 2008;56(12):2843–55. https://doi.org/10.1016/j.actamat.2008.02.016.
  • [9] Maalekian M, Cerjak H. Thermal-Phase Transformation Modelling and Neural Network Analysis of Friction Welding of Non-Circular Eutectoid Steel Components, Welding in theWorld 53 (2009) R44-R51. https://doi.org/10.1007/BF03266702.
  • [10] Can A., Sahin M., and Kucuk M. Modeling of Friction Welding, in: International Science Conference, 2010, II:135-142.
  • [11] Maalekian M. Friction welding critical assessment of literature, Sci Technol Weld Join. 2007;12(8):738–59. https://doi.org/10.1179/174329307X249333.
  • [12] Özdemir N. Investigation of the mechanical properties of friction-welded joints between AISI 304L and AISI 4340 steel as a function rotational speed, Mater Lett. 2005;59(19-20):2504–9. https://doi.org/10.1016/j.matlet.2005.03.034.
  • [13] Özdemir N., Sarsılmaz F., Hasçalık A. Effect of rotational speed on the interface properties of friction-welded AISI 304L to 4340 steel, Mater Des. 2007;28(1):301–7. https://doi.org/10.1016/j.matdes.2005.06.011.
  • [14] Bouarroudj E, Chikh S, Abdi S, Miroud D. Thermal analysis during a rotational friction welding, Appl Therm Eng. 2017;110:1543–53. https://doi.org/10.1016/j.applthermaleng.2016.09.067.
  • [15] Dawood A, Butt S, Hussain G, Siddiqui M, Maqsood A, Zhang F. Thermal Model of Rotary Friction Welding for Similar and Dissimilar Metals, Metals (Basel) 2017;7(6):224. https://doi.org/10.3390/met7060224.
  • [16] Juan J. Valencia and Peter N. Quested Thermophysical Properties, in: ASM Handbook, Volume 15. ASM International; 2008. pp. 468–81.
  • [17] Brandt R, Neuer G., Electrical Resistivity and Thermal Conductivity of Pure Aluminum and Aluminum Alloys up to and above the Melting Temperature, Int J Thermophys. 2007;28(5):1429–46. https://doi.org/10.1007/s10765-006-0144-0.
  • [18] Leitner M, Leitner T, Schmon A, Aziz K, Pottlacher G. Thermophysical Properties of Liquid Aluminum, Metallurgical and Materials Transactions A. https://doi.org/10.1007/s11661-017-4053-6.1-14
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-2151ecec-733a-45be-9927-b61980e37501
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.