Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 18, no 1 | 360--369
Tytuł artykułu

Evaluation of the Efficacy of Effective Microorganisms in the Reclamation of Degraded Soils

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article assesses the suitability of effective microorganisms (EM) for the reclamation of degraded soils. The aim of the research was to determine the reclamation effectiveness of the use of EM against the background of mineral wool used together with sewage sludge or mineral fertilization with nitrogen, phosphorus, potassium (NPK) on soils degraded as a result of sulfur extraction. The effectiveness of reclamation was assessed on the basis of changes in the total organic carbon (TOC) content and the properties of humic compounds. The obtained results showed that the use of effective microorganisms in relation to mineral wool and wool used in combination with sewage sludge or NPK causes significant changes in the content and quality of soil organic matter. The observed decrease in the content of TOC, humins and an increase in the share of carbon of labile fractions and free and loosely bound with silicate-free (R2O3) and calcium (Ca) humus forms indicate, that in the soils in which effective microorganisms were used, mineralization processes dominated in the transformation of soil organic matter. The humification process resulted in more durable humic compounds with a higher content of humic acids and humic acids to fulvic acids ratio (C-HA:C-FA). Supplementing commonly used materials in soil reclamation with the introduction of effective microorganisms is a promising technology. Further research is necessary to determine the composition of these biofertilisers and the optimal doses at which they should be used.
Wydawca

Rocznik
Strony
360--369
Opis fizyczny
Bibliogr. 70 poz., fig., tab.
Twórcy
  • Faculty of Agrobioengineering, Institute of Soil Science, Environment Engineering and Management, University of Life Sciences in Lublin, grazyna.zukowska@up.lublin.pl
  • Faculty of Agrobioengineering, Institute of Soil Science, Environment Engineering and Management, University of Life Sciences in Lublin, marta.bik-malodzinska@up.lublin.pl
  • Division of Biochemistry and Biogerontology, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, szymon@cm.umk.pl
Bibliografia
  • 1. Hariram N.P., Mekha K.B., Suganthan V., Sudhakar K. Sustainalism: An integrated socio-economic-environmental model to address sustainable development and sustainability. Sustainability 2023; 15(13): 10682.
  • 2. Intergovernmental Panel on Climate Change (IPCC). Summary for policymakers. In: Pachauri, R.K., Meyer, L.A. (Eds.), Contribution of Working Groups I, II, and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Climate Change 2014 Syntyhesis Report. Geneva: IPCC.
  • 3. Chu E.W., Karr J.R. Environmental impact: concept, consequences, measurement. Reference Module in Life Sciences, 2017.
  • 4. Lal R., Horn R., Kosaki T. (Eds.). Soil and Sustainable Development Goals, Schweizerbart, Stuttgart, 2018.
  • 5. Helming K., Daedlow K., Paul C., Techen A., Bartke S., Bartkowski B., Kaiser D. B, Wollschläger U., Vogel H. J. Managing soil functions for a sustainable bioeconomy – assessment framework and state of the art. Land Degradation & Development 2018; 29: 3112-3126.
  • 6. Bouma J. Soil security as a roadmap focusing soil contributions on sustainable development agendas. Soil Security 2020; 1:100001.
  • 7. Bonfante A., Basile A., Bouma J. Targeting the soil quality and soil health concepts when aiming for the United Nations Sustainable Development Goals and the EU Green Deal. Soil, 2020, 6, 453-466.
  • 8. Löbmann M. T., Maring L., Prokop G., Brils J., Bender J., Bispo A., Helming K. Systems knowledge for sustainable soil and land management. Science of The Total Environment 2022; 822: 153389.
  • 9. Veerman C., Correia T. P., Bastioli C., Biro B., Bouma J., Cienciala E., Emmett B., Frison E.A., Grand A., Filchew L.H., Kriaučiūnienė Z., Pogrzeba M., Soussana J.F., Olmo C.V., Wittkowski R. Caring for soil is caring for life-ensure 75% of soils are healthy by 2030 for food, people, nature and climate. European Commission, Brussels, 2020.
  • 10. Sheoran V., Sheoran A.S., Poonia P. Soil reclamation of abandoned mine land by revegetation. International Journal of Soil, Sediment and Water 2010; 3, 13.
  • 11. Wang J., Guo L., Bai Z., Yang, L. Using computed tomography (CT) images and multi-fractal theory to quantify the pore distribution of reconstructed soils during ecological restoration in opencast coal-mine. Ecological Engineering 2016; 92: 148–157.
  • 12. Feng J., Wang Z., Bai L. Reading effects of surface coal mining and land reclamation on soil properties: A review. Earth-Science Reviews 2019; 191: 12–25.
  • 13. Myszura M., Żukowska G., Kobyłka A., Mazurkiewicz J. Enzymatic activity of soils forming on an afforested heap from an opencast sulphur mine. Forests 2021; 12(11): 1469.
  • 14. Bik-Małodzińska M., Żukowska G., Paśmionka I., Rybczyńska-Tkaczyk K., Jakubczyk A. Assessment of the effectiveness of soil reclamation techniques degraded by the sulfur industry. Advances in Science and Technology Research Journal 2022; 16(5): 324-334.
  • 15. Pihlap E., Vuko M., Lucas M., Steffens M., Schloter M., Vetterlein D., Endenich M., Kögel-Knabner I. Initial soil formation in an agriculturally reclaimed open-cast mining area – the role of management and loess parent material. Soil and Tillage Research 2019; 191: 224-237.
  • 16. Larney Francis J., Angers Denis A. The role of organic amendments in soil reclamation: A review. Canadian Journal of Soil Science 2012; 92(1): 19-38.
  • 17. Babcock-Jackson L., Konovalova T., Krogman J.P., Bird R., Díaz L.L. Sustainable fertilizers: publication landscape on wastes as nutrient sources, wastewater treatment processes for nutrient recovery, biorefineries, and green ammonia synthesis. Journal of Agricultural and Food Chemistry 2023; 71(22): 8265-8296.
  • 18. Kurniawati A., Toth G., Ylivainio K. Opportunities and challenges of bio-based fertilizers utilization for improving soil health. Organic Agriculture 2023; 13: 335–350.
  • 19. Nazranov K.M., Didanova E.N., Khalishkhova L.Z. Formation and development of the biopreparation market. IOP Conf. Series: Earth and Environmental Science 2021; 699: 012037.
  • 20. Priya A.K., Alagumalai A., Balaji D., Song H. Biobased agricultural products: a sustainable alternative to agrochemicals for promoting a circular economy. RSC Sustainability 2023; 1: 746-762.
  • 21. Singh S.P., Ekanem E., Wakefield T., Comer S. Emerging importance of bio-based products and bio-energy in the U.S. economy: information dissemination and training of students. Int Food Agribus Manag Rev 2023; 5: 1–15.
  • 22. Pylak M., Oszust K., Frąc M. Review report on the role of bioproducts, biopreparations, biostimulants and microbial inoculants in organic production of fruit. Reviews in Environmental Science and Bio/Technology 2019; 18: 597–616.
  • 23. Talaat N.B. Effective microorganisms: An innovative tool for inducing common bean (Phaseolus vulgaris L.) salt-tolerance by regulating photosynthetic rate and endogenous phytohormones production, Scientia Horticulturae 2019; 250: 254-265.
  • 24. Higa T. Effective microorganisms – their role in kyusei nature farming and sustainable agriculture. In: Proceedings of the Third International Conference on Kyusei NatureFarming. Ed. J.F. Parr et al., USDA, Washington, 1996, USA:20-24.
  • 25. Goessler W., Kuehenelt D. Analytical methods for the determination of arsenic and arsenic compounds in the environment. In: William T, Frankenberger Jr William (eds) CRC Press, 2002: 27–50.
  • 26. Zakaria Z., Gairola S., Shariff N.M. Effective microorganisms (EM) technology for water quality restoration and potential for sustainable water resources and management. In: Proc. of the 2010 International Congress on Environmental Modelling and Software Modelling for Environment’s Sake, Fifth Biennial Meeting, Ottawa, ON, Canada, 5–8 July 2010.
  • 27. Han H.S., Supanjani E., Lee K.D. Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant, Soil and Environment 2006; 52(3): 130–136.
  • 28. Pranagal J., Ligęza S., Smal H. Impact of effective microorganisms (EM) application on the physical condition of haplic luvisol. Agronomy 2020; 10: 1049.
  • 29. Piotrowska A., Boruszko D. Analysis of the influence of the application of effective microorganisms on the dynamics of spring wheat. Emergence 2021; 23: 684-693.
  • 30. Pszczółkowski P., Sawicka B., Barbaś P., Skiba D., Krochmal-Marczak B. The use of effective microorganisms as a sustainable alternative to improve the quality of potatoes in food processing. Applied Sciences 2023; 13: 7062.
  • 31. Tyburski J., Łachacz A. The effectiveness of agents improving heavy soils in organic farms. In: Summary of Results of Studies on Organic Farming Realized in 2009. Ministry of Agriculture and Rural Development: Warsaw, Poland, 2010; 318: 267–276.
  • 32. Jakubus M., Gajewski P., Kaczmarek Z., Mocek A. Impact of addition of organic additives and EM-A preparation on physical, chemical and structural state of the arable-humus soil horizon. J Res Appl Agric Engin 2013; 58(3): 220–225.
  • 33. Zhao Y., Li W., Zhou Z., Wang L., Pan L., Zhao L. Dynamics of microbial community structure and cellulolytic activity in agricultural soil amended with two biofertilizers. European Journal of Soil Biology 2005; 41: 21–29.
  • 34. Dziamba S., Pranagal J., Wielgosz E. Some properties of Haplic Luvisol after one-year application of effective microorganisms (EM). Advances of Agricultural Sciences Problem 2009; 542: 139–145.
  • 35. Tołoczko W., Trawczyńska A., Niewiadomski A. Content of organic compounds in soils fertilized with EM preparation. Soil Science Annual 2009; 60: 97–101.
  • 36. Badura L. Soil microorganisms and their importance in ecosystems degraded by humans. Advances of Agricultural Sciences Problem 2005; (505):15-23.
  • 37. Bao N., Wu L., Ye B., Yang K., Zhou W. Assessing soil organic matter of reclaimed soil from a large surface coal mine using a field spectroradiometer in laboratory. Geoderma 2017; 288: 47-55.
  • 38. Woś B., Józefowska A., Chodak M., Pietrzykowski M. Recovering of soil organic matter and associated C and N pools on regenerated forest ecosystems at different tree species influence on post-fire and reclaimed mine sites. Geoderma Regional 2023; 33.
  • 39. Dębska B., Długosz J., Piotrowska-Długosz A., Banach-Szot M. The impact of a bio-fertilizer on the soil organic matter status and carbon sequestration – results from a field-scale study. Journal of Soils and Sediments 2016; 16: 2335–2343.
  • 40. Baran S., Urban D., Wójcikowska-Kapusta A., Bik-Małodzińska M., Żukowska G. Phytoindicative evaluation of habitat conditions of soilless formations reclaimed with flotation sludge, sewage sludge and used mineral wool under the influence of the Jeziórko Sulphur Mine. Journal of Elementology 2015; 20(1): 7-18.
  • 41. PN-EN 15936:2013:02. Available online: https://sklep.pkn.pl/pn-en-15936-2013-02p.html (accessed on 10 January 2024).
  • 42. International Organization for Standardization. Soil Quality. In: Determination of Total Nitrogen Content by Dry Combustion; International Organization for Standardization: Geneva, Switzerland, 1998.
  • 43. Myśków W., Zięba S. The influence of long term fertilization on the biological activity and organic substances of soil. Polish Journal of Soil Sciences 1981; 14(2): 141-151.
  • 44. Kononova M.M. Soil Organic Matter: its Nature, its Role in Soil Formation and in Soil Fertility. Pergamon Press Ltd. Oxford, 1966.
  • 45. Obalum S.E., Chibuike G.U., Peth S., Ouyang Y. Soil organic matter as sole indicator of soil degradation. Environmental Monitoring and Assessment 2017; 189(4): 176.
  • 46. Franzluebbers J. Soil organic matter stratification ratio as an indicator of soil quality. Soil and Tillage Research 2002; 66(2): 95-106.
  • 47. Cotrufo M.F., Lavallee J.M. Chapter One – Soil organic matter formation, persistence, and functioning: A synthesis of current understanding to inform its conservation and regeneration, Editor(s): Donald L. Sparks, Advances in Agronomy, Academic Press 2022; 172: 1-66.
  • 48. Balík J., Kulhánek M., Černý J., Sedlář O., Suran P., Procházková S., Asrade D.A. The impact of the long-term application of mineral nitrogen and sewage sludge fertilizers on the quality of soil organic matter. Chemical and Biological Technologies in Agriculture 2022; 9: 86.
  • 49. Körschens M., Albert E., Armbruster M., Barkusky D., Baumecker M., Behle-Schalk L., Bischoff R., Čergan Z., Ellmer F., Herbst F., Hoffmann S., Hofmann B., Kismanyoky T., Kubat J., Kunzova E., Lopez-Fando C., Merbach I., Merbach W., Pardor M.T., Rogasik J., Rühlmann J., Spiegel H., Schulz E., Tajnsek A., Toth Z., Wegener H., Zorn W. Effect of mineral and organic fertilization on crop yield, nitrogen uptake, carbon and nitrogen balances, as well as soil organic carbon content and dynamics: results from 20 European long-term field experiments of the twenty–first century. Journal Archives of Agronomy and Soil Science 2013; 59: 8.
  • 50. Woźniak M.M., Siebielec S., Siebielec G., Bojarszczuk J., Gałązka A., Urbaniak M. Microbially modified effect of exogenous organic matter on soil chemical and biological indices and plant responses. Journal of Soils and Sediments 2024; 24: 70–85.
  • 51. Achkir A., Aouragh A., El Mahi M., Labjar N., Bouch M.E., Ouahidi M.L., Moussaoui T.E. Implication of sewage sludge increased application rates on soil fertility and heavy metals contamination risk. Emerging Contaminants 2023; 9(1): 100200.
  • 52. Haddix M.L., Gregorich E.G., Helgason B.L., Janzen H., Ellert B.H., Francesca Cotrufo M. Climate, carbon content, and soil texture control the independent formation and persistence of particulate and mineral-associated organic matter in soil. Geoderma 2020; 363: 114160.
  • 53. Bolinder M.A., Crotty F., Elsen A., Frac M., Kismányoky T., Lipiec J., Tits M., Tóth Z., Kätterer T. The effect of crop residues, cover crops, manures and nitrogen fertilization on soil organic carbon changes in agroecosystems: a synthesis of reviews. Mitigation and Adaptation Strategies for Global Change 2020; 25: 929–952.
  • 54. Valarini P.J., Díaz M.C., Gascó J.M., Guerrero F.,Tokeshi H. Assessment of soil properties by organic matter and EM-microorganisms incorporation. Revista Brasileira de Ciência do Solo 2003; 27: 519–525.
  • 55. Wu S.C., Cao Z.H., Li Z.G., Cheung K.C., Wong M.H. Effects of biofertilizer containing N-fixer, P and K solublizers and AM fungi on maize growth: a greenhouse trial. Geoderma 2005; 125: 155–166.
  • 56. Nisha R., Kaushik A., Kaushik C.P. Effect of indigenous cyanobacterial application on structural stability and productivity of an organically poor semi-arid soil. Geoderma 2007; 138: 49–56.
  • 57. Schenck zu Schweinsberg-Mickan M., Müller T. Impact of effective microorganisms and other biofertilizers on soil microbial characteristics, organic matter decomposition, and plant growth. Journal of Plant Nutrition and Soil Science 2009; 172: 704–712.
  • 58. Li X., Guo Q., Wang Y., Xu J., Wei Q., Chen L., Liao L. Enhancing nitrogen and phosphorus removal by applying effective microorganisms to constructed wetlands. Water 2020; 12: 2443.
  • 59. Żukowska G., Baran S., Pawłowski A., Myszura M., Wójcikowska-Kapusta A., Wesołowska S., Pawłowska M. Reclamation of drill cuttings landfill. Annual Set the Environment Protection 2016; 18: 988-1006.
  • 60. Woś B., Pająk M., Pietrzykowski M. Soil organic carbon pools and associated soil chemical properties under two pine species (Pinus sylvestris L. and Pinus nigra Arn.) introduced on reclaimed sandy soils. Forests 2022; 13(2): 328.
  • 61. Haynes R.J. Labile organic matter fractions as central components of the quality of agricultural soils: an overview. Advances in Agronomy 2005; 85: 221-268.
  • 62. Żukowska G., Myszura M., Zdeb M., Pawłowska M. Carbon sequestration in soil as a sustainable way of greenhouse effect mitigation. Problems of Sustainable Development 2020; 15(2): 195-205
  • 63. Żukowska G., Flis-Bujak M., Baran S. Changes in the content of labile fractions of organic matter in light soil fertilized with sewage sludge. Folia Universitatis Agriculturae Stetinensis 1999; (77): 429-436.
  • 64. Joshi H., Choudhary S.P., Mundra S.L. Role of effective microorganisms (EM) in sustainable agriculture. International Journal of Current Microbiology and Applied Sciences 2019; 8(3): 172-181.
  • 65. Orlov D.S. Humus acids of soils, 1st edn. A.A. Balkema, Rotterdam 1986.
  • 66. Wiesmeier M., Urbanski L., Hobley E., Lang B., von Lützow M., Marin-Spiotta E., van Wesemael B., Rabot E., Ließ M., Garcia-Franco N., Wollschläger U., Vogel H., Kögel-Knabner I. Soil organic carbon storage as a key function of soils – A review of drivers and indicators at various scales. Geoderma 2019; 333: 149-162.
  • 67. Yang Z.H., Singh B.R., Sitaula B.K. (2004) Soil organic carbon fractions under different land uses in Mardi Watershed of Nepal. Commun Soil Sci Plant Anal 2004; 35:615–629.
  • 68. Żukowska G., Baran S., Wójcikowska-Kapusta A. Organic carbon content and fractional composition of organic matter in soil reclaimed with sewage sludge. Przemysł Chemiczny 2012; 91(6): 1267-1269.
  • 69. Mayer J., Scheid S., Widmer F., Fließbach A., Oberholzer H.R. How effective are effective microorganisms (EM)? Results from a field study in temperate climate. Applied Soil Ecology 2019; 46(2): 230-239.
  • 70. Lal R., Bouma J., Brevik E., Dawson L., Field D. J., Glaser B., Hatano R., Hartemink A. E., Kosaki T., Lascelles B., Monger C., Muggler C., Ndzana G. M., Pan N. X., Paradelo R., Reyes-Sánchez L. B., Sandén T., Singh B. R, Spiegel H., Yanai J., Zhang J. Soils and sustainable development goals of the United Nations: An International Union of Soil Sciences perspective. Geoderma Regional 2021; 25.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-21361fe5-e946-467c-af55-1a9120468481
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.