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INTRODUCTION

In order to investigate the epidemic dynam-
ics from the mathematical point, continuous 
models are commonly used. However, discrete 
models are also gaining attention. In most cas-
es, these discrete systems arise from discreti-
zation of their continuous counterparts. We 
introduced and analyzed models of this type 
in [1, 2] and [3]. There are various methods 
of discretization, which are described and ana-
lyzed in the literature. In our previous papers 
we used the explicit Euler method and non–
standard discretization methods, including the 
strictly positive scheme. In this paper we show 
an unusual concept of building a discrete mod-
el of epidemic dynamics without discretization 
of its continuous counterpart. This concept is 
presented in [4] and [5]. In the constructed 

model we will include demographic and epide-
miological processes which were considered in 
models from our previous papers.

Here as a homogeneous population we under-
stand a population in which we cannot distinguish 
individuals concerning the risk of being infected. 
A heterogeneous population is a population in 
which this distinction can be done. Here we as-
sume that the heterogeneous population consists 
of two homogeneous subpopulations. The first 
subpopulation is formed by individuals with low 
susceptibility to an infection and the second sub-
population is composed of the people with high 
one. We will call these subpopulations the low 
subpopulation (LS) and high subpopulation (HS), 
respectively. The infection can be transmitted 
among each subpopulation separately and from 
HS to LS. We will reasonably assume that there is 
no transmission from LS to HS.
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The proposed model is an example of SIS 
(susceptible-infected-susceptible) models – an in-
fected individual after recovery does not gain im-
munity and can be infected again. In this paper we 
assume that every process for each subpopulation 
is independent. This assumption results in differ-
ent values of coefficients describing specific pro-
cesses in every subpopulation. According to our 
knowledge, there are no papers in which this case 
is analyzed in such a type of SIS models which 
is presented here, particularly in the context of 
presenting explicit results for stability analysis. 
The reason of neglecting it is obtaining compli-
cated computations. In this paper transmission 
of the infection is described with a general form 
of functions which values can be interpreted as 
probability of remaining susceptible by an indi-
vidual. These functions will be defined later.

Although discrete SIS models built with the 
discretization are not widely used, one find some 
examples of them in literature. Authors in [4] 
analyze two-dimension SIS model for a homo-
geneous population. This model was extended in 
[6], where environment seasonality is considered. 
To do so, the authors introduced a periodic func-
tion reflecting the birth and recruitment process. 
They emphasized formerly omitted an impact of 
demographic processes on population density. 
Martcheva in her book [5] applied the approach 
from [4] to a model for a heterogeneous popu-
lation. However, she did not conduct stability 
analysis of stationary states. An interesting ap-
proach to discrete modelling is depicted in [7]. 
The authors indicated in the subpopulation four 
compartments: susceptible, exposed (infected 
but not infectious), infective, and recovered one. 
Each compartment is divided into n patches. The 
author introduced two time scales: a slow and fast 
one, reflecting accordingly disease dynamics and 
movement between patches. The authors focused 
on analysis of the disease–free stationary state 
stability. The concept from [7] is continued in the 
very recent paper [8] – here the author analyzed 
the additional case when disease dynamics is fast-
er than movement between patches.

In epidemiological modeling the concept of 
the basic reproduction number, customarily de-
noted with R0, is an important issue. Consider-
ing an epidemic in a heterogeneous population, 
we define R0 as a number of new infections pro-
duced by an infective individual in a population at 
the disease-free stationary state. In this paper we 

compute R0 for the given system and formulate 
condition for local stability of the disease-free 
stationary state, defined later, in the context of R0.

Motivation of presented research arose from 
the case of tuberculosis (TB) spread in the Warm-
ian-Masurian province of Poland in years 2001–
2018. In the population of this province two sub-
populations were indicated – the non-homeless 
people, being LS, and the homeless people, which 
comprise HS. In the community of homeless peo-
ple programs of Active Case Finding (ACF) were 
conducted. As a result, the TB incidence dropped 
not only among homeless individuals, but in the 
whole population in the province. This observa-
tion emphasized usefulness of indicating LS and 
HS in the population so TB preventive actions 
can be conducted only for specified subpopula-
tion. It is therefore reasonable to investigate TB 
dynamics in a population where its heterogene-
ity is considered. A description of the ACF pro-
grammes held in the Warmian-Masurian prov-
ince and their impacts are presented in [10]. In 
the cited paper authors introduced a continuous 
model of TB dynamics for the given heteroge-
neous population. The heuristic assumptions of 
this continuous model are considered in our pro-
posed system. We should stress that both models 
(mentioned in [10] and proposed by us) can be 
used for other diseases and other subpopulations 
of a heterogeneous population.

In this paper we assume, if it is not written 
otherwise, that n ∈ N ∪ {0}. 

DESCRIPTION OF THE MODEL 

Let us now describe elements of the analyzed 
model. Each variable and parameter correspond-
ing to LS and HS has a lower subscript equal 
to 1 and 2. respectively. If the lower subscript 
is denoted by i, then i ∈ {1,2}. Following this 
notation, we will denote by S1 and S2 a size of 
the group of healthy people in HS and LS, ana-
logically. The sizes of the infected individuals 
in each subpopulation are expressed with I1 and 
I2. With N1 and N2 we indicate the sizes of the 
whole subpopulations. Naturally we have Ni = Si 
+ Ii. We consider that there are constant inflows 
Ci into both subpopulations. The probabilities of 
individuals’ survival are equal to ri. The ratios of 
recovery and mortality related to the illness are 
denoted by γi and αi.
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Our proposed model has a form 

𝑆𝑆𝑛𝑛+1
(1) = 𝐶𝐶1 + 𝑟𝑟1𝑆𝑆𝑛𝑛(1)𝐺𝐺 (𝛽𝛽1

𝐼𝐼𝑛𝑛(1)

𝑁𝑁𝑛𝑛
(1) + 𝛽𝛽 𝐼𝐼𝑛𝑛(2)

𝑁𝑁𝑛𝑛
(2)) + (𝑟𝑟1 − 𝛼𝛼1)𝛾𝛾1𝐼𝐼𝑛𝑛(1), 

𝐼𝐼𝑛𝑛+1
(1) = 𝑟𝑟1𝑆𝑆𝑛𝑛(1) (1 − 𝐺𝐺 (𝛽𝛽1

𝐼𝐼𝑛𝑛(1)

𝑁𝑁𝑛𝑛
(1) + 𝛽𝛽 𝐼𝐼𝑛𝑛(2)

𝑁𝑁𝑛𝑛
(2))) + (𝑟𝑟1 − 𝛼𝛼1)(1 − 𝛾𝛾1)𝐼𝐼𝑛𝑛(1), 

𝑆𝑆𝑛𝑛+1
(2) = 𝐶𝐶2 + 𝑟𝑟2𝑆𝑆𝑛𝑛(2)𝐻𝐻 (𝛽𝛽2

𝐼𝐼𝑛𝑛(2)

𝑁𝑁𝑛𝑛
(2)) + (𝑟𝑟2 − 𝛼𝛼2)𝛾𝛾2𝐼𝐼𝑛𝑛(2), 

𝐼𝐼𝑛𝑛+1
(2) = 𝑟𝑟2𝑆𝑆𝑛𝑛(2) (1 − 𝐻𝐻(𝛽𝛽2

𝐼𝐼𝑛𝑛(2)

𝑁𝑁𝑛𝑛
(2))) + (𝑟𝑟2 − 𝛼𝛼2)(1 − 𝛾𝛾2)𝐼𝐼𝑛𝑛(2), 

where Sn
(i) and In

(i) mean the sizes of the groups from the i-th population at the n-th node of the discrete 
time scale. The G and H functions reflect probability of staying healthy in LS and HS, accordingly. 
These functions are based on the standard incidence function commonly used in epidemiological 
modeling [11]. With βi we express efficiency of the illness transmission in the i-th subpopulation and β 
corresponds to efficiency of the transmission from HS to LS. Every parameter is fixed and positive. 
More specifically, we assume that ri , γi , βi , β ∈ (0,1) and αi∈(0, ri). Using notations Si

+ := Sn+1
(i), Ii

+ := 
In+1

(i) , Ni
+ := Nn+1

(i) , Si
 := Sn

(i), we rewrite the proposed system as 
𝑆𝑆1+ = 𝐶𝐶1 + 𝑟𝑟1𝑆𝑆1𝐺𝐺 (𝛽𝛽1

𝐼𝐼1
𝑁𝑁1
+ 𝛽𝛽 𝐼𝐼2

𝑁𝑁2
) + (𝑟𝑟1 − 𝛼𝛼1)𝛾𝛾1𝐼𝐼1,   (1a) 

𝐼𝐼1+ = 𝑟𝑟1𝑆𝑆1 (1 − 𝐺𝐺 (𝛽𝛽1
𝐼𝐼1
𝑁𝑁1
+ 𝛽𝛽 𝐼𝐼2

𝑁𝑁2
)) + (𝑟𝑟1 − 𝛼𝛼1)(1 − 𝛾𝛾1)𝐼𝐼1,  (1b) 

𝑆𝑆2+ = 𝐶𝐶2 + 𝑟𝑟2𝑆𝑆2𝐻𝐻 (𝛽𝛽2
𝐼𝐼2
𝑁𝑁2
) + (𝑟𝑟2 − 𝛼𝛼2)𝛾𝛾2𝐼𝐼2,    (1c) 

𝐼𝐼2+ = 𝑟𝑟2𝑆𝑆2 (1 − 𝐻𝐻 (𝛽𝛽2
𝐼𝐼2
𝑁𝑁2
)) + (𝑟𝑟2 − 𝛼𝛼2)(1 − 𝛾𝛾2).   (1d) 

Somewhere, if it does not provide to ambiguity, we will write 

𝐺𝐺 = 𝐺𝐺 (𝛽𝛽1
𝐼𝐼1
𝑁𝑁1

+ 𝛽𝛽 𝐼𝐼2
𝑁𝑁2
) , 𝐻𝐻 = 𝐻𝐻 (𝛽𝛽2

𝐼𝐼2
𝑁𝑁2
). 

Determining the domain of these functions, we follow the obvious fact that Ii ≤ Ni. We assume the 
following properties of the function G: G(x): [0,2) → [0,1), G(0)=1, G(2)=0, G'(x)<0, G''(x)>0. 
Analogically, we determine the function H with properties: H(x): [0,1) → [0,1), H(0)=1, H(1)=0, 
H'(x)<0, H''(x)>0.  
Observe that for an initial condition (S0

(1), I0
(1), S0

(2), I0
(2)) ≥ 0 we have Sn

(1), Sn
(2) > 0 and In

(1), In
(2) ≥ 0.  

As an example of G and H one can point 𝐺𝐺(𝑥𝑥) = 4
𝑥𝑥+2 − 1,𝐻𝐻(𝑥𝑥) = 2

𝑥𝑥+1 − 1.  
Later we will relate to the values of G'(0) and H'(0) for the general form of functions G and H. If 

G(x) is a surjection, we formulate the lemma: 

Lemma 1. If G(x) is a surjection, then 
𝐺𝐺′(0) < − 1

2.      (2) 
Proof. Let us analyze a linear function G*(x)=ax+b, a, b ∈ R, G*(x): [0,2] → [0,1] such that G*(0)=1 
and G*(2)=0. Immediately we get b=1. From the equation 0=2a+1 we get a=-1/2, so G*(x) = -x/2 +1. 
See that the functions G(x) and G*(x) intersect in x=0 and x=2. Because G'(x)<0 and G''(x)>0, we have 
G(x)<G*(x) in x ∈ [0,2]. Since (G*)'(0) = -1/2 we get Ineq. (2).      
Analogically, we can conclude that 
 
Corollary 1. If H(x) is a surjection, then  

      𝐻𝐻′(0) ← 1.      (3) 
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Our proposed model has a form 

𝑆𝑆𝑛𝑛+1
(1) = 𝐶𝐶1 + 𝑟𝑟1𝑆𝑆𝑛𝑛(1)𝐺𝐺 (𝛽𝛽1

𝐼𝐼𝑛𝑛(1)

𝑁𝑁𝑛𝑛
(1) + 𝛽𝛽 𝐼𝐼𝑛𝑛(2)

𝑁𝑁𝑛𝑛
(2)) + (𝑟𝑟1 − 𝛼𝛼1)𝛾𝛾1𝐼𝐼𝑛𝑛(1), 

𝐼𝐼𝑛𝑛+1
(1) = 𝑟𝑟1𝑆𝑆𝑛𝑛(1) (1 − 𝐺𝐺 (𝛽𝛽1

𝐼𝐼𝑛𝑛(1)

𝑁𝑁𝑛𝑛
(1) + 𝛽𝛽 𝐼𝐼𝑛𝑛(2)

𝑁𝑁𝑛𝑛
(2))) + (𝑟𝑟1 − 𝛼𝛼1)(1 − 𝛾𝛾1)𝐼𝐼𝑛𝑛(1), 

𝑆𝑆𝑛𝑛+1
(2) = 𝐶𝐶2 + 𝑟𝑟2𝑆𝑆𝑛𝑛(2)𝐻𝐻 (𝛽𝛽2

𝐼𝐼𝑛𝑛(2)

𝑁𝑁𝑛𝑛
(2)) + (𝑟𝑟2 − 𝛼𝛼2)𝛾𝛾2𝐼𝐼𝑛𝑛(2), 

𝐼𝐼𝑛𝑛+1
(2) = 𝑟𝑟2𝑆𝑆𝑛𝑛(2) (1 − 𝐻𝐻(𝛽𝛽2

𝐼𝐼𝑛𝑛(2)

𝑁𝑁𝑛𝑛
(2))) + (𝑟𝑟2 − 𝛼𝛼2)(1 − 𝛾𝛾2)𝐼𝐼𝑛𝑛(2), 

where Sn
(i) and In

(i) mean the sizes of the groups from the i-th population at the n-th node of the discrete 
time scale. The G and H functions reflect probability of staying healthy in LS and HS, accordingly. 
These functions are based on the standard incidence function commonly used in epidemiological 
modeling [11]. With βi we express efficiency of the illness transmission in the i-th subpopulation and β 
corresponds to efficiency of the transmission from HS to LS. Every parameter is fixed and positive. 
More specifically, we assume that ri , γi , βi , β ∈ (0,1) and αi∈(0, ri). Using notations Si

+ := Sn+1
(i), Ii

+ := 
In+1

(i) , Ni
+ := Nn+1

(i) , Si
 := Sn

(i), we rewrite the proposed system as 
𝑆𝑆1+ = 𝐶𝐶1 + 𝑟𝑟1𝑆𝑆1𝐺𝐺 (𝛽𝛽1

𝐼𝐼1
𝑁𝑁1
+ 𝛽𝛽 𝐼𝐼2

𝑁𝑁2
) + (𝑟𝑟1 − 𝛼𝛼1)𝛾𝛾1𝐼𝐼1,   (1a) 

𝐼𝐼1+ = 𝑟𝑟1𝑆𝑆1 (1 − 𝐺𝐺 (𝛽𝛽1
𝐼𝐼1
𝑁𝑁1
+ 𝛽𝛽 𝐼𝐼2

𝑁𝑁2
)) + (𝑟𝑟1 − 𝛼𝛼1)(1 − 𝛾𝛾1)𝐼𝐼1,  (1b) 

𝑆𝑆2+ = 𝐶𝐶2 + 𝑟𝑟2𝑆𝑆2𝐻𝐻 (𝛽𝛽2
𝐼𝐼2
𝑁𝑁2
) + (𝑟𝑟2 − 𝛼𝛼2)𝛾𝛾2𝐼𝐼2,    (1c) 

𝐼𝐼2+ = 𝑟𝑟2𝑆𝑆2 (1 − 𝐻𝐻 (𝛽𝛽2
𝐼𝐼2
𝑁𝑁2
)) + (𝑟𝑟2 − 𝛼𝛼2)(1 − 𝛾𝛾2).   (1d) 

Somewhere, if it does not provide to ambiguity, we will write 

𝐺𝐺 = 𝐺𝐺 (𝛽𝛽1
𝐼𝐼1
𝑁𝑁1

+ 𝛽𝛽 𝐼𝐼2
𝑁𝑁2
) , 𝐻𝐻 = 𝐻𝐻 (𝛽𝛽2

𝐼𝐼2
𝑁𝑁2
). 

Determining the domain of these functions, we follow the obvious fact that Ii ≤ Ni. We assume the 
following properties of the function G: G(x): [0,2) → [0,1), G(0)=1, G(2)=0, G'(x)<0, G''(x)>0. 
Analogically, we determine the function H with properties: H(x): [0,1) → [0,1), H(0)=1, H(1)=0, 
H'(x)<0, H''(x)>0.  
Observe that for an initial condition (S0

(1), I0
(1), S0

(2), I0
(2)) ≥ 0 we have Sn

(1), Sn
(2) > 0 and In

(1), In
(2) ≥ 0.  

As an example of G and H one can point 𝐺𝐺(𝑥𝑥) = 4
𝑥𝑥+2 − 1,𝐻𝐻(𝑥𝑥) = 2

𝑥𝑥+1 − 1.  
Later we will relate to the values of G'(0) and H'(0) for the general form of functions G and H. If 

G(x) is a surjection, we formulate the lemma: 

Lemma 1. If G(x) is a surjection, then 
𝐺𝐺′(0) < − 1

2.      (2) 
Proof. Let us analyze a linear function G*(x)=ax+b, a, b ∈ R, G*(x): [0,2] → [0,1] such that G*(0)=1 
and G*(2)=0. Immediately we get b=1. From the equation 0=2a+1 we get a=-1/2, so G*(x) = -x/2 +1. 
See that the functions G(x) and G*(x) intersect in x=0 and x=2. Because G'(x)<0 and G''(x)>0, we have 
G(x)<G*(x) in x ∈ [0,2]. Since (G*)'(0) = -1/2 we get Ineq. (2).      
Analogically, we can conclude that 
 
Corollary 1. If H(x) is a surjection, then  

      𝐻𝐻′(0) ← 1.      (3) 

Existence of stationary states 

Let us investigate forms and existence of stationary states (S1, I1, S2
 , I2) of System (1). For every 

stationary state adding Eqs. (1a)–(1b) or (1c)–(1d) by sides yields 
𝑁𝑁𝑖𝑖 = 𝐶𝐶𝑖𝑖 + 𝑟𝑟𝑖𝑖𝑆𝑆𝑖𝑖 + (𝑟𝑟𝑖𝑖 − 𝛼𝛼𝑖𝑖)𝐼𝐼𝑖𝑖     (4) 

or equivalently Ni
 = Ci

 +ri Ni-αi Ii, what provides to 
𝑁𝑁𝑖𝑖 = 𝐶𝐶𝑖𝑖−𝛼𝛼𝑖𝑖𝐼𝐼𝑖𝑖

1−𝑟𝑟𝑖𝑖
.      (5) 

Eq. (4) can be written also as Si+Ii
 = Ci

 +ri Si+(ri -αi )Ii, giving 
𝑆𝑆𝑖𝑖 = 𝐶𝐶𝑖𝑖−(1−𝑟𝑟𝑖𝑖+𝛼𝛼𝑖𝑖)𝐼𝐼𝑖𝑖

1−𝑟𝑟𝑖𝑖
.     (6) 

Let us define 
𝜎𝜎𝑖𝑖: = 1 − 𝑟𝑟𝑖𝑖 + 𝛼𝛼𝑖𝑖 > 0     (7) 

and express Eq. (6) as 
𝑆𝑆𝑖𝑖 = 𝐶𝐶𝑖𝑖−𝜎𝜎𝑖𝑖𝐼𝐼𝑖𝑖

1−𝑟𝑟𝑖𝑖
.      (8) 

For Ii
 = 0 we immediately get the disease–free stationary state 

𝐸𝐸𝑑𝑑𝑑𝑑: = ( 𝐶𝐶1
1 − 𝑟𝑟1

,0, 𝐶𝐶2
1 − 𝑟𝑟2

,0), 
which always exists. From Eq. (8) for Ii

 ,Si ≠0 we obtain that Si>0 if 
𝐼𝐼𝑖𝑖 < 𝐶𝐶𝑖𝑖

𝜎𝜎𝑖𝑖
       (9) 

and Ii>0 if 
𝑆𝑆𝑖𝑖 < 𝐶𝐶𝑖𝑖

1−𝑟𝑟𝑖𝑖
.      (10) 

In a further analysis we will use a notation 
𝜅𝜅𝑖𝑖: = 1 − (𝑟𝑟𝑖𝑖 − 𝛼𝛼𝑖𝑖)(1 − 𝛾𝛾𝑖𝑖).     (11) 

Naturally we have κi
 ∈ (0,1). See that dynamics of Eqs. (1c)–(1d) is independent on Eqs. (1a)–(1b), 

hence Eqs. (1c)–(1d) can be analyzed solely. 
Before investigating the existence of the stationary states, let us introduce auxiliary functions and 

describe their properties. 
 
Auxiliary functions 
Let us define a function 

  𝐹𝐹(𝐼𝐼2): = 𝜅𝜅2
𝐼𝐼2

𝐶𝐶2−𝜎𝜎2𝐼𝐼2
, 𝜅𝜅2: = 𝜅𝜅2(1−𝑟𝑟2)

𝑟𝑟2
.     (12) 

This function is continuous in [0, 𝐶𝐶2
𝜎𝜎2

], where F(0) = 0,  

       lim
𝐼𝐼2→𝐶𝐶2

𝜎𝜎2
𝐹𝐹(𝐼𝐼2) = ∞  

𝐹𝐹′(𝐼𝐼2) = 𝐶𝐶2𝜅𝜅2
(𝐶𝐶2−𝜎𝜎2𝐼𝐼2)2 > 0,     (13) 

and 

𝐹𝐹″(𝐼𝐼2) = 2𝐶𝐶2𝜎𝜎2𝜅𝜅2
(𝐶𝐶2 − 𝜎𝜎2𝐼𝐼2)3 > 0. 

Let us introduce an another function 
𝐹𝐹𝑎𝑎(𝐼𝐼2): = 𝛽𝛽2(1 − 𝑟𝑟2) 𝐼𝐼2

𝐶𝐶2−𝛼𝛼2𝐼𝐼2
,      (14) 

defined on[0, 𝐶𝐶2
𝛼𝛼2

]. The functions F and F a, because of their forms, have similar properties. Hence, F a is 

continuous on [0, 𝐶𝐶2
𝛼𝛼2

] and 

𝐹𝐹𝑎𝑎(0) = 0,   lim
𝐼𝐼2→𝐶𝐶2

𝛼𝛼2
𝐹𝐹𝑎𝑎(𝐼𝐼2) = ∞, 𝐹𝐹𝑎𝑎′(𝐼𝐼2) > 0, 𝐹𝐹𝑎𝑎′′(𝐼𝐼2) > 0.  (15)  
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From Ineq. (9) we have 𝐼𝐼2 < 𝐶𝐶2
𝜎𝜎2

 The definition of σ 2 in Eq. (7) yields 𝐶𝐶2
𝜎𝜎2

< 𝐶𝐶2
𝛼𝛼2

. Hence, we restrict the 

domain of F a(I2) to [0, 𝐶𝐶2
𝜎𝜎2

]. The supremum of the values’ set of F a for the narrowed domain equals 

𝐹𝐹𝑎𝑎 (𝐶𝐶2
𝜎𝜎2

) = 𝛽𝛽2(1 − 𝑟𝑟2)
𝐶𝐶2
𝜎𝜎2

𝐶𝐶2 − 𝛼𝛼2
𝐶𝐶2
𝜎𝜎2

= 𝛽𝛽2. 

Monotonicity of F a gives 
𝐹𝐹𝑎𝑎(𝐼𝐼2)  ∈ [0,β2] ∈ [0,1].      (16) 

Now let us investigate a function 
𝐹𝐹𝑎𝑎(𝐼𝐼2): = 1 − 𝐻𝐻(𝐹𝐹𝑎𝑎(𝐼𝐼2)).    (17) 

Looking at the properties of H and Fa, we state that the composition H(Fa) is decreasing. Remind 
that the domain of H is [0, 1]. The first and the third conditions from Eqs. (15) and the dependence (16) 
yield that we do not have additional conditions because of the composition. 
 
Case I2>0 

Let us analyze a case when I2>0, meaning that in the population there is at least one infected 
individual from HS. We formulate the theorem: 
 
Theorem 1. If I2>0 for any stationary state of System (1), then there is a unique pair of the 
coordinates: (𝑆𝑆2, 𝐼𝐼2) = (𝑆𝑆2, 𝐼𝐼2), where 𝐼𝐼2 is a solution of an equation 

𝜅𝜅2(1−𝑟𝑟2)
𝑟𝑟2

𝐼𝐼2
𝐶𝐶2−𝜎𝜎2𝐼𝐼2

= 1 − 𝐻𝐻 (𝛽𝛽2(1 − 𝑟𝑟2) 𝐼𝐼2
𝐶𝐶2−𝛼𝛼2𝐼𝐼2

),    (18) 

The pair (𝑆𝑆2, 𝐼𝐼2) exists if 
−𝐻𝐻′(0) ≥ 𝜅𝜅2

𝛽𝛽2𝑟𝑟2
.      (19) 

Proof. Considering Eqs. (5), (8) and (11) in Eq. (1d) for any stationary state gives Eq. (18). This 
equation can be written, using the definitions (12) and (17), as F(I2) = Fb (I2). Let us investigate the 
intersection point of F and Fb for the domain 𝐼𝐼2 ∈ (0, 𝐶𝐶2

𝜎𝜎2
) determined in Subsection 3.1. Observe that 

H is decreasing and concave up, so Fb is increasing and concave down. Both Fa and Fb intersect at I2=0. 
See that we have Fa', Fb', Fa''>0 and Fb''<0. They have one unique intersection point 𝐼𝐼2 > 0 if and only 
if 

𝐹𝐹𝑎𝑎′(0) ≤ 𝐹𝐹𝑏𝑏′(0).      (20) 
Eq. (13) gives 

𝐹𝐹𝑎𝑎′(0) = 𝜅𝜅2(1−𝑟𝑟2)
𝑟𝑟2

𝐶𝐶2
𝐶𝐶2

2 = 𝜅𝜅2(1−𝑟𝑟2)
𝐶𝐶2𝑟𝑟2

.     (21) 

From Eq. (17) we obtain 
𝐹𝐹𝑎𝑎′(𝐼𝐼2) = −𝐻𝐻′(𝛽𝛽2(1 − 𝑟𝑟2)𝐹𝐹(𝐼𝐼2))𝛽𝛽2(1 − 𝑟𝑟2)𝐹𝐹′(𝐼𝐼2). 

Substituting I2 = 0 yields 
𝐹𝐹𝑏𝑏′(0) = − 𝛽𝛽2(1−𝑟𝑟2)

𝐶𝐶2
𝐻𝐻′(0).     (22) 

Considering Eqs. (21) and (22) in Ineq. (20) leads to 
𝜅𝜅2(1 − 𝑟𝑟2)

𝐶𝐶2𝑟𝑟2
≤ − 𝛽𝛽2(1 − 𝑟𝑟2)

𝐶𝐶2
𝐻𝐻′(0), 

giving Ineq. (19).           
Observe that combining Theorem 1 and Corollary 1, we get that 

Corollary 2. If H(x) is a surjection, then Ineq. (19) in Theorem 1 holds if 𝜅𝜅2 > 𝛽𝛽2𝑟𝑟2. 
 
Case I2=0 
Now we investigate the case when I2 = 0. Let us consider the existence of a proposed stationary state 

𝐸𝐸1: = (𝑆𝑆1, 𝐼𝐼1, 𝐶𝐶2
1−𝑟𝑟2

,0) , 𝑆𝑆1, 𝐼𝐼1 > 0.    (23) 

See that considering the pair (𝑆𝑆2, 𝐼𝐼2) = ( 𝐶𝐶2
1−𝑟𝑟2

,0) in Eqs. (1) for E1 leads to the analogical reasoning as 
in the proof of Theorem 1. We get an equation which is analogical to Eq. (18) and has the form 

𝜅𝜅1(1−𝑟𝑟1)
𝑟𝑟1

𝐼𝐼1
𝐶𝐶1−𝜎𝜎1𝐼𝐼1

= 1 − 𝐺𝐺 (𝛽𝛽1(1 − 𝑟𝑟1) 𝐼𝐼1
𝐶𝐶1−𝜎𝜎1𝐼𝐼1

).   (24) 

Eq. (24) has one positive unique solution 𝐼𝐼1 = 𝐼𝐼1. On the grounds of Theorem 1 we conclude that 

Corollary 3. In System (1) there is a stationary state E1 defined in (23) existing if 
−𝐺𝐺′(0) ≥ 𝜅𝜅1

𝛽𝛽1𝑟𝑟1
.     (25) 

Analogically to Corollary 2, we state that 

Corollary 4. If G(x) is a surjection, then Ineq. (25) from Corollary 3 holds if 𝜅𝜅1 > 𝛽𝛽1𝑟𝑟1. 
 
Existence of an endemic state 
 Now let us investigate existence of a postulated positive (endemic) stationary state. For this state 
we have I2>0, what is the assumption of Theorem 1. Hence, for the positive state we have (𝑆𝑆2, 𝐼𝐼2) =
(𝑆𝑆2, 𝐼𝐼2). We formulate the theorem: 

Theorem 2. In System (1) there is a positive (endemic) stationary state 𝐸𝐸𝑒𝑒: = (𝑆𝑆1, 𝐼𝐼1, 𝑆𝑆2, 𝐼𝐼2) existing 
if (19) and  

−𝐺𝐺′ (𝐹𝐹𝑎𝑎(𝐼𝐼2)) ≥ 𝜅𝜅1
𝛽𝛽1𝑟𝑟1

.     (26) 

Proof. Including the pair (𝑆𝑆2, 𝐼𝐼2) in Eq. (1b) for the postulated stationary state leads to the equation 
similar to Eq. (18). The obtained equation has a form 

𝜅𝜅1(1−𝑟𝑟1)
𝑟𝑟1

𝐼𝐼1
𝐶𝐶1−𝜎𝜎1𝐼𝐼1

= 1 − 𝐺𝐺 (𝛽𝛽1(1 − 𝑟𝑟1) 𝐼𝐼1
𝐶𝐶1−𝛼𝛼1𝐼𝐼1

+ 𝐹𝐹𝑎𝑎(𝐼𝐼2)).  (27) 

Let us repeat the approach from the proof of Theorem 1. We define functions: 

𝛷𝛷(𝐼𝐼1): = 𝜅𝜅1(1 − 𝑟𝑟1)
𝑟𝑟1

𝐼𝐼1
𝐶𝐶1 − 𝜎𝜎1𝐼𝐼1

. 

𝛷𝛷𝑎𝑎(𝐼𝐼1): = 1 − 𝐺𝐺 (𝛽𝛽1(1 − 𝑟𝑟1) 𝐼𝐼1
𝐶𝐶1 − 𝛼𝛼1𝐼𝐼1

+ 𝐹𝐹𝑎𝑎(𝐼𝐼2)). 

They are continuous for 𝐼𝐼1 ∈ [0, 𝐶𝐶1
𝜎𝜎1

] and fulfill Φ', Φ'', Φ a' >0 and Φ a'' <0. We state that there is the 

unique positive point 𝐼𝐼1 being an intersection of Φa and Φ if and only Φ'(0) ≤ Φ a'(0), what can be written 
as 

𝜅𝜅1(1 − 𝑟𝑟1)
𝐶𝐶1𝑟𝑟1

≤ − 𝛽𝛽1(1 − 𝑟𝑟1)
𝐶𝐶1

𝐺𝐺′ (𝐹𝐹𝑎𝑎(𝐼𝐼2)) 

and (26). Ineq. (19) comes from Theorem 1.        
Let us compare the values of 𝐼𝐼1 and 𝐼𝐼1. Remind that they are the positive unique solutions of Eqs. 

accordingly (24) and (27). Since G'<0, we have 

1 − 𝐺𝐺 (𝛽𝛽1(1 − 𝑟𝑟1) 𝐼𝐼1
𝐶𝐶1 − 𝜎𝜎1𝐼𝐼1

) < 1 − 𝐺𝐺 (𝛽𝛽1(1 − 𝑟𝑟1) 𝐼𝐼1
𝐶𝐶1 − 𝜎𝜎1𝐼𝐼1

+ 𝐹𝐹𝑎𝑎(𝐼𝐼2)). 

Hence, we state that 𝐼𝐼1 < 𝐼𝐼1. 
Now we remind Ineqs. (25) and (26). They appear in accordingly Corollary 3 and Theorem 2 stating 

about the existence of the states E1 and Ee, respectively. From the properties of G we have 𝐺𝐺′(0) <
𝐺𝐺′ (𝐹𝐹𝑎𝑎(𝐼𝐼2)) < 0. Hence, Ineq. (26) is stricter than Ineq. (25). Considering this fact and the forms of 
the E1 and Ee stationary states, we state the state Ee exists for smaller ranges of parameter values 
comparing to the state E1. This situation is desirable from the epidemiological point. 
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𝐸𝐸1: = (𝑆𝑆1, 𝐼𝐼1, 𝐶𝐶2
1−𝑟𝑟2

,0) , 𝑆𝑆1, 𝐼𝐼1 > 0.    (23) 

See that considering the pair (𝑆𝑆2, 𝐼𝐼2) = ( 𝐶𝐶2
1−𝑟𝑟2

,0) in Eqs. (1) for E1 leads to the analogical reasoning as 
in the proof of Theorem 1. We get an equation which is analogical to Eq. (18) and has the form 

𝜅𝜅1(1−𝑟𝑟1)
𝑟𝑟1

𝐼𝐼1
𝐶𝐶1−𝜎𝜎1𝐼𝐼1

= 1 − 𝐺𝐺 (𝛽𝛽1(1 − 𝑟𝑟1) 𝐼𝐼1
𝐶𝐶1−𝜎𝜎1𝐼𝐼1

).   (24) 

Eq. (24) has one positive unique solution 𝐼𝐼1 = 𝐼𝐼1. On the grounds of Theorem 1 we conclude that 

Corollary 3. In System (1) there is a stationary state E1 defined in (23) existing if 
−𝐺𝐺′(0) ≥ 𝜅𝜅1

𝛽𝛽1𝑟𝑟1
.     (25) 

Analogically to Corollary 2, we state that 

Corollary 4. If G(x) is a surjection, then Ineq. (25) from Corollary 3 holds if 𝜅𝜅1 > 𝛽𝛽1𝑟𝑟1. 
 
Existence of an endemic state 
 Now let us investigate existence of a postulated positive (endemic) stationary state. For this state 
we have I2>0, what is the assumption of Theorem 1. Hence, for the positive state we have (𝑆𝑆2, 𝐼𝐼2) =
(𝑆𝑆2, 𝐼𝐼2). We formulate the theorem: 

Theorem 2. In System (1) there is a positive (endemic) stationary state 𝐸𝐸𝑒𝑒: = (𝑆𝑆1, 𝐼𝐼1, 𝑆𝑆2, 𝐼𝐼2) existing 
if (19) and  

−𝐺𝐺′ (𝐹𝐹𝑎𝑎(𝐼𝐼2)) ≥ 𝜅𝜅1
𝛽𝛽1𝑟𝑟1

.     (26) 

Proof. Including the pair (𝑆𝑆2, 𝐼𝐼2) in Eq. (1b) for the postulated stationary state leads to the equation 
similar to Eq. (18). The obtained equation has a form 

𝜅𝜅1(1−𝑟𝑟1)
𝑟𝑟1

𝐼𝐼1
𝐶𝐶1−𝜎𝜎1𝐼𝐼1

= 1 − 𝐺𝐺 (𝛽𝛽1(1 − 𝑟𝑟1) 𝐼𝐼1
𝐶𝐶1−𝛼𝛼1𝐼𝐼1

+ 𝐹𝐹𝑎𝑎(𝐼𝐼2)).  (27) 

Let us repeat the approach from the proof of Theorem 1. We define functions: 

𝛷𝛷(𝐼𝐼1): = 𝜅𝜅1(1 − 𝑟𝑟1)
𝑟𝑟1

𝐼𝐼1
𝐶𝐶1 − 𝜎𝜎1𝐼𝐼1

. 

𝛷𝛷𝑎𝑎(𝐼𝐼1): = 1 − 𝐺𝐺 (𝛽𝛽1(1 − 𝑟𝑟1) 𝐼𝐼1
𝐶𝐶1 − 𝛼𝛼1𝐼𝐼1

+ 𝐹𝐹𝑎𝑎(𝐼𝐼2)). 

They are continuous for 𝐼𝐼1 ∈ [0, 𝐶𝐶1
𝜎𝜎1

] and fulfill Φ', Φ'', Φ a' >0 and Φ a'' <0. We state that there is the 

unique positive point 𝐼𝐼1 being an intersection of Φa and Φ if and only Φ'(0) ≤ Φ a'(0), what can be written 
as 

𝜅𝜅1(1 − 𝑟𝑟1)
𝐶𝐶1𝑟𝑟1

≤ − 𝛽𝛽1(1 − 𝑟𝑟1)
𝐶𝐶1

𝐺𝐺′ (𝐹𝐹𝑎𝑎(𝐼𝐼2)) 

and (26). Ineq. (19) comes from Theorem 1.        
Let us compare the values of 𝐼𝐼1 and 𝐼𝐼1. Remind that they are the positive unique solutions of Eqs. 

accordingly (24) and (27). Since G'<0, we have 

1 − 𝐺𝐺 (𝛽𝛽1(1 − 𝑟𝑟1) 𝐼𝐼1
𝐶𝐶1 − 𝜎𝜎1𝐼𝐼1

) < 1 − 𝐺𝐺 (𝛽𝛽1(1 − 𝑟𝑟1) 𝐼𝐼1
𝐶𝐶1 − 𝜎𝜎1𝐼𝐼1

+ 𝐹𝐹𝑎𝑎(𝐼𝐼2)). 

Hence, we state that 𝐼𝐼1 < 𝐼𝐼1. 
Now we remind Ineqs. (25) and (26). They appear in accordingly Corollary 3 and Theorem 2 stating 

about the existence of the states E1 and Ee, respectively. From the properties of G we have 𝐺𝐺′(0) <
𝐺𝐺′ (𝐹𝐹𝑎𝑎(𝐼𝐼2)) < 0. Hence, Ineq. (26) is stricter than Ineq. (25). Considering this fact and the forms of 
the E1 and Ee stationary states, we state the state Ee exists for smaller ranges of parameter values 
comparing to the state E1. This situation is desirable from the epidemiological point. 
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 Local stability of the stationary states 

Let us investigate local stability of the obtained stationary states. The Jacobian matrix for System 

(1) can be written as a block matrix 𝐽𝐽(𝑆𝑆1, 𝐼𝐼1, 𝑆𝑆2, 𝐼𝐼2) = (
𝐽𝐽1 𝐽𝐽𝑎𝑎
0 𝐽𝐽2), where J1 , Ja and J2 have the forms  

𝐽𝐽1 =

(

 
 𝑟𝑟1𝐺𝐺 + 𝑟𝑟1𝛽𝛽1

𝑆𝑆1𝐼𝐼1
𝑁𝑁12

𝐺𝐺′ 𝑟𝑟1𝛽𝛽1
𝑆𝑆12
𝑁𝑁12
𝐺𝐺′ + (𝑟𝑟1 − 𝛼𝛼1)𝛾𝛾1

𝑟𝑟1 − 𝑟𝑟1𝐺𝐺 − 𝑟𝑟1𝛽𝛽1
𝑆𝑆1𝐼𝐼1
𝑁𝑁12

𝐺𝐺′ −𝑟𝑟1𝛽𝛽1
𝑆𝑆12
𝑁𝑁12
𝐺𝐺′+ 1 − 𝜅𝜅1

)

 
 , 

𝐽𝐽𝑎𝑎 =

(

 
 −𝛽𝛽𝑟𝑟1𝑆𝑆1

𝐼𝐼2
𝑁𝑁22
𝐺𝐺′ −𝛽𝛽𝑟𝑟1𝑆𝑆1

𝑆𝑆2
𝑁𝑁22
𝐺𝐺′

𝛽𝛽𝑟𝑟1𝑆𝑆1
𝐼𝐼2
𝑁𝑁22
𝐺𝐺′ 𝛽𝛽𝑟𝑟1𝑆𝑆1

𝑆𝑆2
𝑁𝑁22
𝐺𝐺′
)

 
 , 

𝐽𝐽2 =

(

 
 𝑟𝑟2𝐻𝐻 + 𝑟𝑟2𝛽𝛽2

𝑆𝑆2𝐼𝐼2
𝑁𝑁22

𝐻𝐻′ 𝑟𝑟2𝛽𝛽2
𝑆𝑆22
𝑁𝑁22
𝐻𝐻′+ (𝑟𝑟2 − 𝛼𝛼2)𝛾𝛾2

𝑟𝑟2 − 𝑟𝑟2𝐻𝐻 − 𝑟𝑟2𝛽𝛽2
𝑆𝑆2𝐼𝐼2
𝑁𝑁22

𝐻𝐻′ −𝑟𝑟2𝛽𝛽2
𝑆𝑆22
𝑁𝑁22
𝐻𝐻′+ 1 − 𝜅𝜅2

)

 
 . 

We will investigate the local stability of the states, computing eigenvalues of J. Hence, it is sufficient to 
consider eigenvalues of J1 and J2. 
 
Local stability of Edf 

We start from the local stability of Edf. We will prove the theorem: 

Theorem 3. Edf is locally stable if 
−𝐺𝐺′(0) < 𝜅𝜅1

𝑟𝑟1𝛽𝛽1
       (28) 

 and 
−𝐻𝐻′(0) < 𝜅𝜅2

𝑟𝑟2𝛽𝛽2
.      (29) 

Proof. Remind that for Edf we have G(0)=1, H(0)=1 and Ni=Si. The matrices J1(Edf) and J2(Edf) read 

𝐽𝐽1(𝐸𝐸𝑑𝑑𝑑𝑑) = (
𝑟𝑟1 𝑟𝑟1𝛽𝛽1𝐺𝐺′(0) + (𝑟𝑟1 − 𝛼𝛼1)𝛾𝛾1
0 −𝑟𝑟1𝛽𝛽1𝐺𝐺′(0) + 1 − 𝜅𝜅1

) , 𝐽𝐽2(𝐸𝐸𝑑𝑑𝑑𝑑) = (
𝑟𝑟2 𝑟𝑟2𝛽𝛽2𝐻𝐻′(0) + (𝑟𝑟2 − 𝛼𝛼2)𝛾𝛾2
0 −𝑟𝑟2𝛽𝛽2𝐻𝐻′(0) + 1 − 𝜅𝜅2

). 
We obtain the eigenvalues  

𝜆𝜆1 = 𝑟𝑟1, 𝜆𝜆2 = −𝑟𝑟1𝛽𝛽1𝐺𝐺′(0) + 1 − 𝜅𝜅1, 𝜆𝜆3 = 𝑟𝑟2, 𝜆𝜆4 = −𝑟𝑟2𝛽𝛽2𝐻𝐻′(0) + 1 − 𝜅𝜅2. 
From the definition of ri we get |λ1,3|<1. A condition |λ2|<1 is equivalent to −1 < −𝑟𝑟1𝛽𝛽1𝐺𝐺′(0) + 1 −
𝜅𝜅1 < 1, what can be written as −2 < −𝑟𝑟1𝛽𝛽1𝐺𝐺′(0) − 𝜅𝜅1 < 0. This compound inequality can be 
expressed as two separated ones: 

−2 < −𝑟𝑟1𝛽𝛽1𝐺𝐺′(0) − 𝜅𝜅1      (30) 
and 

−𝑟𝑟1𝛽𝛽1𝐺𝐺′(0) − 𝜅𝜅1 < 0.    (31) 
From Ineq. (30) we have 𝜅𝜅1 − 2 < −𝑟𝑟1𝛽𝛽1𝐺𝐺′(0). Since κ 1∈ (0,1), the left–hand side of the above 
inequality is negative, whereas its right–hand side is positive. Hence, we state that this inequality always 
holds. The condition |λ2|<1 is true if (31), what can be written as Ineq. (28). For λ4 we conduct analogical 
reasoning like for λ4. We state that |λ4|<1 if (29).        

Recall Ineq. (25), what is the condition for the E1 existence. This inequality stays on the contrary 
to Ineq. (28), what is one of the conditions for the Edf local stability. The similar reasoning can be done 
for Ineq. (19) being the condition for the Ee existence. We conclude that 
Corollary 5. If E1 or Ee exists, then Edf loses stability. 

Local stability of E1 
Now we determine conditions for E1 local stability. In the next theorem and its proof we will use 

notations: 
𝐺𝐺 = 𝐺𝐺 (𝛽𝛽1

𝐼𝐼1
𝑁𝑁1

),     (32) 

𝜗𝜗1: = 𝑟𝑟1𝛽𝛽1
𝑆𝑆1𝐼𝐼1
𝑁𝑁1

2  ∈ (0,1),     (33) 

𝜃𝜃1: = 𝑟𝑟1𝛽𝛽1
𝑆𝑆12

𝑁𝑁1
2 ∈ (0,1).     (34) 

and 
 𝜂𝜂1: = 𝑟𝑟1 − 𝛼𝛼1  ∈ (0,1).     (35) 

The variable’s value in the above definitions relate to E1. We will indicate the derivative of G 
at𝛽𝛽1

𝐼𝐼1
𝑁𝑁1

by G' and the identity 2x2 matrix by I. 

Theorem 4. Existing E1 is locally stable if (29) and if one of sets of conditions: 
2 > (1 − 𝛾𝛾1)𝜂𝜂1 + 𝑟𝑟1𝐺𝐺 − (𝜃𝜃1 − 𝜗𝜗1)𝐺𝐺′,     (36) 

−(𝜃𝜃1 − 𝜗𝜗1(1 − 𝜂𝜂1))𝐺𝐺′ + (1 − 𝜂𝜂1)𝑟𝑟1𝐺𝐺 + (1 − 𝛾𝛾1(1 − 𝑟𝑟1))𝜂𝜂1 < 1 − 𝑟𝑟1𝜃𝜃1𝐺𝐺′   (37) 
or 

𝑟𝑟1(𝜂𝜂1𝐺𝐺 − 𝜃𝜃1𝐺𝐺′) < 1 + 𝜂𝜂1(𝑟𝑟1𝛾𝛾1 − 𝜗𝜗1𝐺𝐺′)     (38) 
 holds. 
Proof. We assume that E1 exists. For this state we have J2(E1)=J2(Edf) and hence we obtain Ineq. (29). 
The determinant of J1(E1)- λI reads 

𝑑𝑑𝑑𝑑𝑑𝑑 ( 𝑟𝑟1𝐺𝐺 + 𝜗𝜗1𝐺𝐺′ − 𝜆𝜆 𝜃𝜃1𝐺𝐺′ + 𝜂𝜂1𝛾𝛾1
𝑟𝑟1 − 𝑟𝑟1𝐺𝐺 − 𝜗𝜗1𝐺𝐺′ −𝜃𝜃1𝐺𝐺′ + 𝜂𝜂1(1 − 𝛾𝛾1) − 𝜆𝜆). 

Adding the first row to the second one gives 

𝑑𝑑𝑑𝑑𝑑𝑑(𝐽𝐽1(𝐸𝐸1) − 𝜆𝜆𝜆𝜆) = 𝑑𝑑𝑑𝑑𝑑𝑑 (𝑟𝑟1𝐺𝐺 + 𝜗𝜗1𝐺𝐺′ − 𝜆𝜆 𝜃𝜃1𝐺𝐺′ + 𝜂𝜂1𝛾𝛾1
𝑟𝑟1 − 𝜆𝜆 𝜂𝜂1 − 𝜆𝜆 ). 

We write the characteristic polynomial of J1(E1) as P(λ) := λ2-bλ+c, where 
𝑏𝑏: = (𝜗𝜗1 − 𝜃𝜃1)𝐺𝐺′ + 𝑟𝑟1𝐺𝐺 + (1 − 𝛾𝛾1)𝜂𝜂1,

𝑐𝑐: = 𝜂𝜂1(𝑟𝑟1𝐺𝐺 + 𝜗𝜗1𝐺𝐺′) − 𝑟𝑟1(𝜃𝜃1𝐺𝐺′ + 𝜂𝜂1𝛾𝛾1).   (39) 

Character of eigenvalues of J1(E1) depends on the sign of the discriminant of P(λ). We will denote this 
discriminant with Δ . The non–generic case when Δ=0 will be omitted.  

1. Firstly we assume that Δ>0. The eigenvalues are real and equal to 

𝜆𝜆1,2 = −𝑏𝑏 ∓ √𝑏𝑏2 − 4𝑐𝑐
2 . 

It is sufficient to check λ1>-1 and λ2<1. From the first inequality we have 
√𝑏𝑏2 − 4𝑐𝑐 < 2 − 𝑏𝑏.     (40) 

If 2-b>0, what can be written as Ineq. (36), then Ineq. (40) is reasonable. Hence, we raise its both sides 
to a square and get 

𝑏𝑏2 − 4𝑐𝑐 < 4 − 4𝑏𝑏 + 𝑏𝑏2 ⇒ 𝑏𝑏 < 1 + 𝑐𝑐    (41) 
Using the definitions from (39), we rewrite the last inequality from (41) as Ineq. (37). 
The condition λ2<1 can be written as 

√𝑏𝑏2 − 4𝑐𝑐 < 2 + 𝑏𝑏.     (42) 
See that Ineq. (42) is weaker than Ineq. (40), so the case λ2<1 does not have to be analyzed. 

 
2. Now let Δ<0. The eigenvalues are complex with non-zero imaginary part and equal to 

𝜆𝜆1,2 = −𝑏𝑏 ± 𝑖𝑖√4𝑐𝑐 − 𝑏𝑏2

2 , 
where i is an imaginary unit. The dependence λ1 λ2=| λ|<1 guaranties the local stability of E1. See that 

|𝜆𝜆| = (𝑏𝑏
2)

2
+ 4𝑐𝑐 − 𝑏𝑏2

4 = 𝑐𝑐. 
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 Local stability of the stationary states 

Let us investigate local stability of the obtained stationary states. The Jacobian matrix for System 

(1) can be written as a block matrix 𝐽𝐽(𝑆𝑆1, 𝐼𝐼1, 𝑆𝑆2, 𝐼𝐼2) = (
𝐽𝐽1 𝐽𝐽𝑎𝑎
0 𝐽𝐽2), where J1 , Ja and J2 have the forms  

𝐽𝐽1 =

(

 
 𝑟𝑟1𝐺𝐺 + 𝑟𝑟1𝛽𝛽1

𝑆𝑆1𝐼𝐼1
𝑁𝑁12

𝐺𝐺′ 𝑟𝑟1𝛽𝛽1
𝑆𝑆12
𝑁𝑁12
𝐺𝐺′ + (𝑟𝑟1 − 𝛼𝛼1)𝛾𝛾1

𝑟𝑟1 − 𝑟𝑟1𝐺𝐺 − 𝑟𝑟1𝛽𝛽1
𝑆𝑆1𝐼𝐼1
𝑁𝑁12

𝐺𝐺′ −𝑟𝑟1𝛽𝛽1
𝑆𝑆12
𝑁𝑁12
𝐺𝐺′+ 1 − 𝜅𝜅1

)

 
 , 

𝐽𝐽𝑎𝑎 =

(

 
 −𝛽𝛽𝑟𝑟1𝑆𝑆1

𝐼𝐼2
𝑁𝑁22
𝐺𝐺′ −𝛽𝛽𝑟𝑟1𝑆𝑆1

𝑆𝑆2
𝑁𝑁22
𝐺𝐺′

𝛽𝛽𝑟𝑟1𝑆𝑆1
𝐼𝐼2
𝑁𝑁22
𝐺𝐺′ 𝛽𝛽𝑟𝑟1𝑆𝑆1

𝑆𝑆2
𝑁𝑁22
𝐺𝐺′
)

 
 , 

𝐽𝐽2 =

(

 
 𝑟𝑟2𝐻𝐻 + 𝑟𝑟2𝛽𝛽2

𝑆𝑆2𝐼𝐼2
𝑁𝑁22

𝐻𝐻′ 𝑟𝑟2𝛽𝛽2
𝑆𝑆22
𝑁𝑁22
𝐻𝐻′+ (𝑟𝑟2 − 𝛼𝛼2)𝛾𝛾2

𝑟𝑟2 − 𝑟𝑟2𝐻𝐻 − 𝑟𝑟2𝛽𝛽2
𝑆𝑆2𝐼𝐼2
𝑁𝑁22

𝐻𝐻′ −𝑟𝑟2𝛽𝛽2
𝑆𝑆22
𝑁𝑁22
𝐻𝐻′+ 1 − 𝜅𝜅2

)

 
 . 

We will investigate the local stability of the states, computing eigenvalues of J. Hence, it is sufficient to 
consider eigenvalues of J1 and J2. 
 
Local stability of Edf 

We start from the local stability of Edf. We will prove the theorem: 

Theorem 3. Edf is locally stable if 
−𝐺𝐺′(0) < 𝜅𝜅1

𝑟𝑟1𝛽𝛽1
       (28) 

 and 
−𝐻𝐻′(0) < 𝜅𝜅2

𝑟𝑟2𝛽𝛽2
.      (29) 

Proof. Remind that for Edf we have G(0)=1, H(0)=1 and Ni=Si. The matrices J1(Edf) and J2(Edf) read 

𝐽𝐽1(𝐸𝐸𝑑𝑑𝑑𝑑) = (
𝑟𝑟1 𝑟𝑟1𝛽𝛽1𝐺𝐺′(0) + (𝑟𝑟1 − 𝛼𝛼1)𝛾𝛾1
0 −𝑟𝑟1𝛽𝛽1𝐺𝐺′(0) + 1 − 𝜅𝜅1

) , 𝐽𝐽2(𝐸𝐸𝑑𝑑𝑑𝑑) = (
𝑟𝑟2 𝑟𝑟2𝛽𝛽2𝐻𝐻′(0) + (𝑟𝑟2 − 𝛼𝛼2)𝛾𝛾2
0 −𝑟𝑟2𝛽𝛽2𝐻𝐻′(0) + 1 − 𝜅𝜅2

). 
We obtain the eigenvalues  

𝜆𝜆1 = 𝑟𝑟1, 𝜆𝜆2 = −𝑟𝑟1𝛽𝛽1𝐺𝐺′(0) + 1 − 𝜅𝜅1, 𝜆𝜆3 = 𝑟𝑟2, 𝜆𝜆4 = −𝑟𝑟2𝛽𝛽2𝐻𝐻′(0) + 1 − 𝜅𝜅2. 
From the definition of ri we get |λ1,3|<1. A condition |λ2|<1 is equivalent to −1 < −𝑟𝑟1𝛽𝛽1𝐺𝐺′(0) + 1 −
𝜅𝜅1 < 1, what can be written as −2 < −𝑟𝑟1𝛽𝛽1𝐺𝐺′(0) − 𝜅𝜅1 < 0. This compound inequality can be 
expressed as two separated ones: 

−2 < −𝑟𝑟1𝛽𝛽1𝐺𝐺′(0) − 𝜅𝜅1      (30) 
and 

−𝑟𝑟1𝛽𝛽1𝐺𝐺′(0) − 𝜅𝜅1 < 0.    (31) 
From Ineq. (30) we have 𝜅𝜅1 − 2 < −𝑟𝑟1𝛽𝛽1𝐺𝐺′(0). Since κ 1∈ (0,1), the left–hand side of the above 
inequality is negative, whereas its right–hand side is positive. Hence, we state that this inequality always 
holds. The condition |λ2|<1 is true if (31), what can be written as Ineq. (28). For λ4 we conduct analogical 
reasoning like for λ4. We state that |λ4|<1 if (29).        

Recall Ineq. (25), what is the condition for the E1 existence. This inequality stays on the contrary 
to Ineq. (28), what is one of the conditions for the Edf local stability. The similar reasoning can be done 
for Ineq. (19) being the condition for the Ee existence. We conclude that 
Corollary 5. If E1 or Ee exists, then Edf loses stability. 

Local stability of E1 
Now we determine conditions for E1 local stability. In the next theorem and its proof we will use 

notations: 
𝐺𝐺 = 𝐺𝐺 (𝛽𝛽1

𝐼𝐼1
𝑁𝑁1

),     (32) 

𝜗𝜗1: = 𝑟𝑟1𝛽𝛽1
𝑆𝑆1𝐼𝐼1
𝑁𝑁1

2  ∈ (0,1),     (33) 

𝜃𝜃1: = 𝑟𝑟1𝛽𝛽1
𝑆𝑆12

𝑁𝑁1
2 ∈ (0,1).     (34) 

and 
 𝜂𝜂1: = 𝑟𝑟1 − 𝛼𝛼1  ∈ (0,1).     (35) 

The variable’s value in the above definitions relate to E1. We will indicate the derivative of G 
at𝛽𝛽1

𝐼𝐼1
𝑁𝑁1

by G' and the identity 2x2 matrix by I. 

Theorem 4. Existing E1 is locally stable if (29) and if one of sets of conditions: 
2 > (1 − 𝛾𝛾1)𝜂𝜂1 + 𝑟𝑟1𝐺𝐺 − (𝜃𝜃1 − 𝜗𝜗1)𝐺𝐺′,     (36) 

−(𝜃𝜃1 − 𝜗𝜗1(1 − 𝜂𝜂1))𝐺𝐺′ + (1 − 𝜂𝜂1)𝑟𝑟1𝐺𝐺 + (1 − 𝛾𝛾1(1 − 𝑟𝑟1))𝜂𝜂1 < 1 − 𝑟𝑟1𝜃𝜃1𝐺𝐺′   (37) 
or 

𝑟𝑟1(𝜂𝜂1𝐺𝐺 − 𝜃𝜃1𝐺𝐺′) < 1 + 𝜂𝜂1(𝑟𝑟1𝛾𝛾1 − 𝜗𝜗1𝐺𝐺′)     (38) 
 holds. 
Proof. We assume that E1 exists. For this state we have J2(E1)=J2(Edf) and hence we obtain Ineq. (29). 
The determinant of J1(E1)- λI reads 

𝑑𝑑𝑑𝑑𝑑𝑑 ( 𝑟𝑟1𝐺𝐺 + 𝜗𝜗1𝐺𝐺′ − 𝜆𝜆 𝜃𝜃1𝐺𝐺′ + 𝜂𝜂1𝛾𝛾1
𝑟𝑟1 − 𝑟𝑟1𝐺𝐺 − 𝜗𝜗1𝐺𝐺′ −𝜃𝜃1𝐺𝐺′ + 𝜂𝜂1(1 − 𝛾𝛾1) − 𝜆𝜆). 

Adding the first row to the second one gives 

𝑑𝑑𝑑𝑑𝑑𝑑(𝐽𝐽1(𝐸𝐸1) − 𝜆𝜆𝜆𝜆) = 𝑑𝑑𝑑𝑑𝑑𝑑 (𝑟𝑟1𝐺𝐺 + 𝜗𝜗1𝐺𝐺′ − 𝜆𝜆 𝜃𝜃1𝐺𝐺′ + 𝜂𝜂1𝛾𝛾1
𝑟𝑟1 − 𝜆𝜆 𝜂𝜂1 − 𝜆𝜆 ). 

We write the characteristic polynomial of J1(E1) as P(λ) := λ2-bλ+c, where 
𝑏𝑏: = (𝜗𝜗1 − 𝜃𝜃1)𝐺𝐺′ + 𝑟𝑟1𝐺𝐺 + (1 − 𝛾𝛾1)𝜂𝜂1,

𝑐𝑐: = 𝜂𝜂1(𝑟𝑟1𝐺𝐺 + 𝜗𝜗1𝐺𝐺′) − 𝑟𝑟1(𝜃𝜃1𝐺𝐺′ + 𝜂𝜂1𝛾𝛾1).   (39) 

Character of eigenvalues of J1(E1) depends on the sign of the discriminant of P(λ). We will denote this 
discriminant with Δ . The non–generic case when Δ=0 will be omitted.  

1. Firstly we assume that Δ>0. The eigenvalues are real and equal to 

𝜆𝜆1,2 = −𝑏𝑏 ∓ √𝑏𝑏2 − 4𝑐𝑐
2 . 

It is sufficient to check λ1>-1 and λ2<1. From the first inequality we have 
√𝑏𝑏2 − 4𝑐𝑐 < 2 − 𝑏𝑏.     (40) 

If 2-b>0, what can be written as Ineq. (36), then Ineq. (40) is reasonable. Hence, we raise its both sides 
to a square and get 

𝑏𝑏2 − 4𝑐𝑐 < 4 − 4𝑏𝑏 + 𝑏𝑏2 ⇒ 𝑏𝑏 < 1 + 𝑐𝑐    (41) 
Using the definitions from (39), we rewrite the last inequality from (41) as Ineq. (37). 
The condition λ2<1 can be written as 

√𝑏𝑏2 − 4𝑐𝑐 < 2 + 𝑏𝑏.     (42) 
See that Ineq. (42) is weaker than Ineq. (40), so the case λ2<1 does not have to be analyzed. 

 
2. Now let Δ<0. The eigenvalues are complex with non-zero imaginary part and equal to 

𝜆𝜆1,2 = −𝑏𝑏 ± 𝑖𝑖√4𝑐𝑐 − 𝑏𝑏2

2 , 
where i is an imaginary unit. The dependence λ1 λ2=| λ|<1 guaranties the local stability of E1. See that 

|𝜆𝜆| = (𝑏𝑏
2)

2
+ 4𝑐𝑐 − 𝑏𝑏2

4 = 𝑐𝑐. 
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Hence, only the condition c<1 has to hold. This inequality can be written as Ineq. (38).   

Local stability of Ee 
Here we determine local stability of Ee. We will use notations 

𝐺𝐺 = 𝐺𝐺 (𝛽𝛽1
𝐼𝐼1
𝑁𝑁1
+ 𝛽𝛽 𝐼𝐼2

𝑁𝑁2
) , 𝐻𝐻 = 𝐻𝐻 (𝛽𝛽2

𝐼𝐼2
𝑁𝑁2
) ,

𝐺𝐺′ = 𝐺𝐺′(𝛽𝛽1𝐼𝐼1/𝑁𝑁1 + 𝛽𝛽𝐼𝐼2/𝑁𝑁2), 𝐻𝐻′ = 𝐻𝐻′ (𝛽𝛽2
𝐼𝐼2
𝑁𝑁2
) ,

𝜁𝜁1 = 𝑟𝑟1𝛽𝛽1
𝑆𝑆1𝐼𝐼1
𝑁𝑁1
2 , 𝜁𝜁2 = 𝑟𝑟2𝛽𝛽2

𝑆𝑆2𝐼𝐼2
𝑁𝑁2
2 , 𝜉𝜉1 = 𝑟𝑟1𝛽𝛽1

𝑆𝑆1
2

𝑁𝑁1
2 , 𝜉𝜉2 = 𝑟𝑟2𝛽𝛽2

𝑆𝑆2
2

𝑁𝑁2
2 .

   (43) 

The determinants of J1(Ee) and J2(Ee) read accordingly 

𝑑𝑑𝑑𝑑𝑑𝑑 ( 𝑟𝑟1𝐺𝐺 + 𝜁𝜁1𝐺𝐺′ 𝜉𝜉1𝐺𝐺′+ (𝑟𝑟1 − 𝛼𝛼1)𝛾𝛾1
𝑟𝑟1 − 𝑟𝑟1𝐺𝐺 − 𝜁𝜁1𝐺𝐺′ −𝜉𝜉1𝐺𝐺′+ 1 − 𝜅𝜅1

) , 𝑑𝑑𝑑𝑑𝑑𝑑 ( 𝑟𝑟2𝐻𝐻 + 𝜁𝜁2𝐻𝐻′ 𝜉𝜉2𝐻𝐻′+ (𝑟𝑟2 − 𝛼𝛼2)𝛾𝛾2
𝑟𝑟2 − 𝑟𝑟2𝐻𝐻 − 𝜁𝜁2𝐻𝐻′ −𝜉𝜉2𝐻𝐻′+ 1 − 𝜅𝜅2

). 
We conduct similar approach as for the determinant of J1(E1)- λI. Hence, we state that 

Corollary 6. Existing state Ee is locally stable if one of sets of conditions: 
2 > (1 − 𝛾𝛾1)𝜂𝜂1 + 𝑟𝑟1𝐺𝐺 − (𝜉𝜉1 − 𝜁𝜁1)𝐺𝐺′,  

−(𝜉𝜉1 − 𝜁𝜁1(1 − 𝜂𝜂1))𝐺𝐺′+ (1 − 𝜂𝜂1)𝑟𝑟1𝐺𝐺 + (1 − 𝛾𝛾1(1 − 𝑟𝑟1))𝜂𝜂1 < 1 − 𝑟𝑟1𝜉𝜉1𝐺𝐺′, 
2 > (1 − 𝛾𝛾2)𝜂𝜂2 + 𝑟𝑟2𝐻𝐻 − (𝜉𝜉2 − 𝜁𝜁2)𝐻𝐻′, 

 −(𝜉𝜉2 − 𝜁𝜁2(1 − 𝜂𝜂2))𝐻𝐻′+ (1 − 𝜂𝜂2)𝑟𝑟2𝐻𝐻 + (1 − 𝛾𝛾2(1 − 𝑟𝑟2))𝜂𝜂2 < 1 − 𝑟𝑟2𝜉𝜉2𝐻𝐻′  
or 

𝑟𝑟1(𝜂𝜂1𝐺𝐺 − 𝜉𝜉1𝐺𝐺′) < 1 + 𝜂𝜂1(𝑟𝑟1𝛾𝛾1 − 𝜁𝜁1𝐺𝐺′),     (44) 
𝑟𝑟2(𝜂𝜂2𝐻𝐻 − 𝜉𝜉2𝐻𝐻′) < 1 + 𝜂𝜂2(𝑟𝑟2𝛾𝛾2 − 𝜁𝜁2𝐻𝐻′)     (45) 

holds. 

The basic reproduction number 

Now we compute R 0 of System (1) with the use of the next-generation approach. This approach 
was introduced and described in [9]. Firstly we rearrange System (1) so that two first equations 
correspond to variables describing the groups of infected individuals. We obtain 

𝐼𝐼1+ = 𝑟𝑟1𝑆𝑆1(1 − 𝐺𝐺) + (𝑟𝑟1 − 𝛼𝛼1)(1 − 𝛾𝛾1)𝐼𝐼1,     
𝐼𝐼2+ = 𝑟𝑟2𝑆𝑆2(1 − 𝐻𝐻) + (𝑟𝑟2 − 𝛼𝛼2)(1 − 𝛾𝛾2)𝐼𝐼2,     

𝑆𝑆1+ = 𝐶𝐶1 + 𝑟𝑟1𝑆𝑆1𝐺𝐺 + (𝑟𝑟1 − 𝛼𝛼1)𝛾𝛾1𝐼𝐼1,     
𝑆𝑆2+ = 𝐶𝐶2 + 𝑟𝑟2𝑆𝑆2𝐻𝐻 + (𝑟𝑟2 − 𝛼𝛼2)𝛾𝛾2𝐼𝐼2,.    (46) 

The disease–free state in System (46) has a form 𝐸𝐸𝑑𝑑𝑑𝑑:= (0,0, 𝐶𝐶1
1−𝑟𝑟1

, 𝐶𝐶2
1−𝑟𝑟2

). 
In a further analysis we will use a definition 𝜁𝜁:= 𝛽𝛽𝑟𝑟1

𝐶𝐶1
𝐶𝐶2

1−𝑟𝑟2
1−𝑟𝑟1

.  

The Jacobian matrix at 𝐸𝐸𝑑𝑑𝑑𝑑 for System (46) can be written as a block matrix (𝐽𝐽𝑎𝑎 0
𝐽𝐽𝑏𝑏 𝐽𝐽𝑐𝑐) , where 

𝐽𝐽𝑎𝑎: = (−𝑟𝑟1𝛽𝛽1𝐺𝐺′(0) + 1 − 𝜅𝜅1 −𝜁𝜁𝜁𝜁′(0)
0 −𝑟𝑟2𝛽𝛽2𝐻𝐻′(0) + 1 − 𝜅𝜅2

) ,

𝐽𝐽𝑏𝑏: = (𝑟𝑟1𝛽𝛽1𝐺𝐺′(0) + (𝑟𝑟1 − 𝛼𝛼1)𝛾𝛾1 𝜁𝜁𝜁𝜁′(0)
0 𝑟𝑟2𝛽𝛽2𝐻𝐻′(0) + 𝜂𝜂2𝑟𝑟2

) , 𝐽𝐽𝑐𝑐: = (𝑟𝑟1 0
0 𝑟𝑟2) .

 

We express Ja as F+T, where F reflects new infections and T corresponds to the other process for infective 
states. The matrices F and T read 

𝐹𝐹 = (−𝑟𝑟1𝛽𝛽1𝐺𝐺′(0) −𝜁𝜁𝜁𝜁′(0)
0 −𝑟𝑟2𝛽𝛽2𝐻𝐻′(0)

) , 𝑇𝑇 = (1 − 𝜅𝜅1 0
0 1 − 𝜅𝜅2). 

 
We write I-T and (I-T)-1 and F(I-T)-1 as 
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Hence, only the condition c<1 has to hold. This inequality can be written as Ineq. (38).   

Local stability of Ee 
Here we determine local stability of Ee. We will use notations 

𝐺𝐺 = 𝐺𝐺 (𝛽𝛽1
𝐼𝐼1
𝑁𝑁1
+ 𝛽𝛽 𝐼𝐼2

𝑁𝑁2
) , 𝐻𝐻 = 𝐻𝐻 (𝛽𝛽2

𝐼𝐼2
𝑁𝑁2
) ,

𝐺𝐺′ = 𝐺𝐺′(𝛽𝛽1𝐼𝐼1/𝑁𝑁1 + 𝛽𝛽𝐼𝐼2/𝑁𝑁2), 𝐻𝐻′ = 𝐻𝐻′ (𝛽𝛽2
𝐼𝐼2
𝑁𝑁2
) ,

𝜁𝜁1 = 𝑟𝑟1𝛽𝛽1
𝑆𝑆1𝐼𝐼1
𝑁𝑁1
2 , 𝜁𝜁2 = 𝑟𝑟2𝛽𝛽2

𝑆𝑆2𝐼𝐼2
𝑁𝑁2
2 , 𝜉𝜉1 = 𝑟𝑟1𝛽𝛽1

𝑆𝑆1
2

𝑁𝑁1
2 , 𝜉𝜉2 = 𝑟𝑟2𝛽𝛽2

𝑆𝑆2
2

𝑁𝑁2
2 .

   (43) 

The determinants of J1(Ee) and J2(Ee) read accordingly 

𝑑𝑑𝑑𝑑𝑑𝑑 ( 𝑟𝑟1𝐺𝐺 + 𝜁𝜁1𝐺𝐺′ 𝜉𝜉1𝐺𝐺′+ (𝑟𝑟1 − 𝛼𝛼1)𝛾𝛾1
𝑟𝑟1 − 𝑟𝑟1𝐺𝐺 − 𝜁𝜁1𝐺𝐺′ −𝜉𝜉1𝐺𝐺′+ 1 − 𝜅𝜅1

) , 𝑑𝑑𝑑𝑑𝑑𝑑 ( 𝑟𝑟2𝐻𝐻 + 𝜁𝜁2𝐻𝐻′ 𝜉𝜉2𝐻𝐻′+ (𝑟𝑟2 − 𝛼𝛼2)𝛾𝛾2
𝑟𝑟2 − 𝑟𝑟2𝐻𝐻 − 𝜁𝜁2𝐻𝐻′ −𝜉𝜉2𝐻𝐻′+ 1 − 𝜅𝜅2

). 
We conduct similar approach as for the determinant of J1(E1)- λI. Hence, we state that 

Corollary 6. Existing state Ee is locally stable if one of sets of conditions: 
2 > (1 − 𝛾𝛾1)𝜂𝜂1 + 𝑟𝑟1𝐺𝐺 − (𝜉𝜉1 − 𝜁𝜁1)𝐺𝐺′,  

−(𝜉𝜉1 − 𝜁𝜁1(1 − 𝜂𝜂1))𝐺𝐺′+ (1 − 𝜂𝜂1)𝑟𝑟1𝐺𝐺 + (1 − 𝛾𝛾1(1 − 𝑟𝑟1))𝜂𝜂1 < 1 − 𝑟𝑟1𝜉𝜉1𝐺𝐺′, 
2 > (1 − 𝛾𝛾2)𝜂𝜂2 + 𝑟𝑟2𝐻𝐻 − (𝜉𝜉2 − 𝜁𝜁2)𝐻𝐻′, 

 −(𝜉𝜉2 − 𝜁𝜁2(1 − 𝜂𝜂2))𝐻𝐻′+ (1 − 𝜂𝜂2)𝑟𝑟2𝐻𝐻 + (1 − 𝛾𝛾2(1 − 𝑟𝑟2))𝜂𝜂2 < 1 − 𝑟𝑟2𝜉𝜉2𝐻𝐻′  
or 

𝑟𝑟1(𝜂𝜂1𝐺𝐺 − 𝜉𝜉1𝐺𝐺′) < 1 + 𝜂𝜂1(𝑟𝑟1𝛾𝛾1 − 𝜁𝜁1𝐺𝐺′),     (44) 
𝑟𝑟2(𝜂𝜂2𝐻𝐻 − 𝜉𝜉2𝐻𝐻′) < 1 + 𝜂𝜂2(𝑟𝑟2𝛾𝛾2 − 𝜁𝜁2𝐻𝐻′)     (45) 

holds. 

The basic reproduction number 

Now we compute R 0 of System (1) with the use of the next-generation approach. This approach 
was introduced and described in [9]. Firstly we rearrange System (1) so that two first equations 
correspond to variables describing the groups of infected individuals. We obtain 

𝐼𝐼1+ = 𝑟𝑟1𝑆𝑆1(1 − 𝐺𝐺) + (𝑟𝑟1 − 𝛼𝛼1)(1 − 𝛾𝛾1)𝐼𝐼1,     
𝐼𝐼2+ = 𝑟𝑟2𝑆𝑆2(1 − 𝐻𝐻) + (𝑟𝑟2 − 𝛼𝛼2)(1 − 𝛾𝛾2)𝐼𝐼2,     

𝑆𝑆1+ = 𝐶𝐶1 + 𝑟𝑟1𝑆𝑆1𝐺𝐺 + (𝑟𝑟1 − 𝛼𝛼1)𝛾𝛾1𝐼𝐼1,     
𝑆𝑆2+ = 𝐶𝐶2 + 𝑟𝑟2𝑆𝑆2𝐻𝐻 + (𝑟𝑟2 − 𝛼𝛼2)𝛾𝛾2𝐼𝐼2,.    (46) 

The disease–free state in System (46) has a form 𝐸𝐸𝑑𝑑𝑑𝑑:= (0,0, 𝐶𝐶1
1−𝑟𝑟1

, 𝐶𝐶2
1−𝑟𝑟2

). 
In a further analysis we will use a definition 𝜁𝜁:= 𝛽𝛽𝑟𝑟1

𝐶𝐶1
𝐶𝐶2

1−𝑟𝑟2
1−𝑟𝑟1

.  

The Jacobian matrix at 𝐸𝐸𝑑𝑑𝑑𝑑 for System (46) can be written as a block matrix (𝐽𝐽𝑎𝑎 0
𝐽𝐽𝑏𝑏 𝐽𝐽𝑐𝑐) , where 

𝐽𝐽𝑎𝑎: = (−𝑟𝑟1𝛽𝛽1𝐺𝐺′(0) + 1 − 𝜅𝜅1 −𝜁𝜁𝜁𝜁′(0)
0 −𝑟𝑟2𝛽𝛽2𝐻𝐻′(0) + 1 − 𝜅𝜅2

) ,

𝐽𝐽𝑏𝑏: = (𝑟𝑟1𝛽𝛽1𝐺𝐺′(0) + (𝑟𝑟1 − 𝛼𝛼1)𝛾𝛾1 𝜁𝜁𝜁𝜁′(0)
0 𝑟𝑟2𝛽𝛽2𝐻𝐻′(0) + 𝜂𝜂2𝑟𝑟2

) , 𝐽𝐽𝑐𝑐: = (𝑟𝑟1 0
0 𝑟𝑟2) .

 

We express Ja as F+T, where F reflects new infections and T corresponds to the other process for infective 
states. The matrices F and T read 

𝐹𝐹 = (−𝑟𝑟1𝛽𝛽1𝐺𝐺′(0) −𝜁𝜁𝜁𝜁′(0)
0 −𝑟𝑟2𝛽𝛽2𝐻𝐻′(0)

) , 𝑇𝑇 = (1 − 𝜅𝜅1 0
0 1 − 𝜅𝜅2). 

 
We write I-T and (I-T)-1 and F(I-T)-1 as 

𝐼𝐼 − 𝑇𝑇 = (𝜅𝜅1 0
0 𝜅𝜅2) ,

(𝐼𝐼 − 𝑇𝑇)−1 =

(

 
1
𝜅𝜅1

0

0 1
𝜅𝜅2
.)

 , 𝐹𝐹(𝐼𝐼 − 𝑇𝑇)−1 =

(

 
 
−𝑟𝑟1𝛽𝛽1
𝜅𝜅1

𝐺𝐺′(0) −𝜁𝜁
𝜅𝜅2
𝐺𝐺′(0)

0 −𝑟𝑟2𝛽𝛽2
𝜅𝜅2

𝐻𝐻′(0)
)

 
 . 

We define ρ(M) as a spectral radius of a matrix M. We require that ρ (Jc)<1 and ρ (T)<1. These conditions 
can be written as accordingly max(r1, r 2)<1 and max(1-κ1,1-κ 2)<1. Both inequalities always hold. We 
define R 0 as ρ(F(I-T)-1 ), what has the form 

𝑅𝑅0 = 𝑚𝑚𝑚𝑚𝑚𝑚 (
−𝑟𝑟1𝛽𝛽1
𝜅𝜅1

𝐺𝐺′(0),−𝑟𝑟2𝛽𝛽2𝜅𝜅2
𝐻𝐻′(0)). 

According to Theorem 3, we conclude that 

Corollary 7. The state 𝐸𝐸𝑑𝑑𝑑𝑑 of System (1) is locally stable if R 0<1. 

Case β1=0 
Let us analyze the cases when the values of transmission coefficients equal 0. Firstly notice that the 

form and existence of Edf is independent on the values of these coefficients. Now see that if β=0, then 
System (1) describes the epidemic in separated subpopulations. This case does not reflect dynamics of 
epidemic in a heterogeneous population. Now assume that β2=0 This equality corresponds to an 
unrealistic situation in which any individual from HS cannot get infected. The remaining case β1=0 
means that there is no illness transmission in LS. This situation is nearly impossible in reality, but can 
happen when the individuals from LS do not interact. It can occur during general isolation, like it 
happened during the COVID–19 pandemic. Hence, in this paragraph we assume that β1=0. 

Under this assumption the domain of the function G is redefined so that G: [0,1] → [0,1]. Thanks 
to this redefinition, as G we can choose the function F. System (1) becomes 

S1
+ =C1 +r1 S1 H(β I 2

N 2)+(r1− α1)γ1 I 1 ,

I 1
+ =r1 S1(1− H(β I 2

N 2))+(r 1− α1)(1− γ1)I 1 ,

S2
+ =C 2 +r 2 S2 H(β2

I 2

N 2)+(r2− α2)γ2 I 2 ,

I 2
+ =r2 S 2(1− H(β2

I 2

N 2))+(r2− α2)(1− γ2)I 2 .
   (47) 

Let us investigate existence of stationary state of System (47). Similarly as previously, we consider 
two cases: I2=0 and I2>0. 

Firstly let us assume that I2=0. Hence, we get 𝑆𝑆2 =
𝐶𝐶2
1−𝑟𝑟2

. If(𝐼𝐼2,𝑆𝑆2) = (0,
𝐶𝐶2
1−𝑟𝑟2

), then two first 
equations of System (47) become an independent system having a form 

𝑆𝑆1+ = 𝐶𝐶1 + 𝑟𝑟1𝑆𝑆1𝐻𝐻(0) + (𝑟𝑟1 − 𝛼𝛼1)𝛾𝛾1𝐼𝐼1,
𝐼𝐼1+ = 𝑟𝑟1𝑆𝑆1(1 − 𝐻𝐻(0)) + (𝑟𝑟1 − 𝛼𝛼1)(1 − 𝛾𝛾1)𝐼𝐼1.

   (48) 

Since H(0)=1, we rewrite System (48) as 
𝑆𝑆1+ = 𝐶𝐶1 + 𝑟𝑟1𝑆𝑆1 + (𝑟𝑟1 − 𝛼𝛼1)𝛾𝛾1𝐼𝐼1, (49𝑎𝑎)
𝐼𝐼1+ = (𝑟𝑟1 − 𝛼𝛼1)(1 − 𝛾𝛾1)𝐼𝐼1(49𝑏𝑏).

 

The unique stationary state of System (49) is (𝑆𝑆1,𝐼𝐼1) = (
𝐶𝐶1
1−𝑟𝑟1

, 0). We conclude that for I2=0 the unique 

stationary state of System (47) is Edf. Now we assume that (𝑆𝑆2, 𝐼𝐼2) = (𝑆𝑆2, 𝐼𝐼2). In the following theorem 
and its proof we will notations 

𝜎𝜎:= (1 − 𝑟𝑟1𝐻𝐻)𝜅𝜅1 − (𝑟𝑟1 − 𝛼𝛼1)𝑟𝑟1𝛾𝛾1(1 − 𝐻𝐻)   (50) 
and 
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𝐻𝐻:= 𝐻𝐻 (𝛽𝛽 𝐼𝐼2
𝑁𝑁2
).     (51) 

From the properties of H we have 
0 < 𝐻𝐻 < 1.     (52) 

Let us formulate the theorem: 

Theorem 5. System (47) has a positive stationary state (𝑆𝑆1$, 𝐼𝐼1$, 𝑆𝑆2, 𝐼𝐼2), where 
𝑆𝑆1$: =

𝜅𝜅1𝐶𝐶1
𝑟𝑟1𝜎𝜎

,     (53) 

𝐼𝐼1$: =
𝐶𝐶1(1−𝐻𝐻)

𝜎𝜎 .     (54) 
This state exists if 

𝛾𝛾1 >
1
2.      (55) 

Proof. Including (𝑆𝑆2, 𝐼𝐼2) = (𝑆𝑆2, 𝐼𝐼2) in two first equations of System (47) for a stationary state yields 
𝑆𝑆1 = 𝐶𝐶1 + 𝑟𝑟1𝑆𝑆1𝐻𝐻 + (𝑟𝑟1 − 𝛼𝛼1)𝛾𝛾1𝐼𝐼1,
𝐼𝐼1 = 𝑟𝑟1𝑆𝑆1(1 − 𝐻𝐻) + (1 − 𝜅𝜅1)𝐼𝐼1.

    (56) 

From the above equations we get accordingly 
𝑆𝑆1 =

𝐶𝐶1+(𝑟𝑟1−𝛼𝛼1)𝛾𝛾1𝐼𝐼1
1−𝑟𝑟1𝐻𝐻

, 𝑆𝑆1 =
𝜅𝜅1𝐼𝐼1

𝑟𝑟1(1−𝐻𝐻)
.    (57) 

Solving System (57) gives (54). From the second equation of (57) we have Eq. (53). See that Ineq. (52) 
yields 1 − 𝐻𝐻 ∈ (0,1). Thanks to this property we obtain the positivity of Si

$ and Ii
$, under the condition 

σ >0. Using Eq. (50), this inequality can be written as 
(1 − 𝑟𝑟1𝐻𝐻)𝜅𝜅1 − (𝑟𝑟1 − 𝛼𝛼1)𝑟𝑟1𝛾𝛾1(1 − 𝐻𝐻) > 0, 

Applying Eq. (11), from the above inequality we get 
1 − 𝑟𝑟1𝐻𝐻 + (𝑟𝑟1 − 𝛼𝛼1)𝛾𝛾1(1 − 𝑟𝑟1) > 𝑟𝑟1𝐻𝐻(𝑟𝑟1 − 𝛼𝛼1)(1 − 2𝛾𝛾1).   (58) 

The condition 𝑟𝑟1𝐻𝐻 < 1 is always true. Let us consider the inequality 
(𝑟𝑟1 − 𝛼𝛼1)𝛾𝛾1(1 − 𝑟𝑟1) > 𝑟𝑟1𝐻𝐻(𝑟𝑟1 − 𝛼𝛼1)(1 − 2𝛾𝛾1),   (59) 

which is stronger than Ineq. (58). Ineq. (59) holds if 
𝛾𝛾1(1 − 𝑟𝑟1) + 2𝛾𝛾1𝑟𝑟1𝐻𝐻 > 𝑟𝑟1𝐻𝐻.     (60) 

If Ineq. (55) holds, what is probable from the epidemiological point, then Ineq. (60) and consequently 
Ineq. (58) are true. Hence, we obtain the fulfillment of Ii

*>0 and Si
*>0 under Ineq. (55).   

 

NUMERICAL SIMULATIONS

Finally we illustrate the dynamics of Sys-
tem (1) for values of parameters fitted to real 
data. These data reflect the case of the TB epi-
demic mentioned in Section 1. Simulations 
were performed with Matlab software. Nu-
merical results of the simulations and actual 
epidemic data were compared so that the best-
fitted values of the parameters were obtained. 
These values are shown in Table 1.

Numbers of the homeless people were ob-
tained from the Regional Center for Social Policy, 
Office of the Marshall of the Warmian-Masurian 
province in Poland. Demographic figures were 
taken from statistical yearbooks [12]. Epidemic 
data were anonymized by the Independent Public 
Tuberculosis and Lung Diseases Unit in Olsztyn, 

Poland. Only numerical details were provided. All 
data are fully available without any restrictions. 
The numbers of healthy and infected individuals 
for each subpopulation for year 2001 were chosen 
as the initial condition for System (1). The values 

Table 1. The values of the parameters for the model 
described by System (1)

Name Described process Value (no units)
C1 Constant inflow into LS 11000
C2 Constant inflow into HS 60

r1, r2 Natural death 0.991
γ1 , γ2 Recovery 0.9
α1, α2 Disease-related death 0.09

β1 Transmission among LS 0.4286
β2 Transmission among HS 0.4445
β Transmission from HS to LS 0.0150
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of β1, β2 and β were estimated with the use of 
the built-in lsqcurvefit function in Matlab. This 
function is based on the Gauss-Newton algorithm 
[13]. The values of the remaining parameters 
were obtained from the Central Statistical Office 
of Poland. In Figure 1 comparison between the 
simulated values and the actual data is presented.

CONCLUSIONS

In this paper we introduced and analyzed the 
discrete model of the illness transmission in the 
heterogeneous population. The model was con-
structed without using discretization of the con-
tinuous model, what is not a usual approach. We 
defined stationary states of the proposed system 
– we determined the conditions for their existence. 
Later we investigated the conditions for their lo-
cal stability and computed the basic reproduction 
number R0 of the system. Finally we discussed the 
case of the lack of the illness transmission in the 
subpopulation with low susceptibility to infection.

We provided the mathematical analysis of the 
proposed system. We indicated appearing station-
ary states and expressed the explicit conditions of 
their existence and local stability. What is impor-
tant, we assumed that the parameters describing 
each subpopulation have different values. Fur-
thermore, we did not define specific functions de-
scribing the illness transmission. These assump-
tions make our model general.

The results obtained in this paper are in 
line with those concerning similar continuous 

Figure 1. Tuberculosis in the Warmian-Mazurian province over the years 2001–2018 (number of 
the infected non-homeless individuals). Comparison between the model and the actual data

models. In System (1) there are both disease–
free (Edf) and endemic (Ee) stationary states, 
what is typical in epidemiological models. The 
conditions for local stability of Edf depend on the 
values of parameters and derivatives of transmis-
sion functions for Edf. These values constitute 
the expression for R0 which determines the local 
stability of Edf. Crossing the critical value R0=1 
provides instability of this state, what should be 
expected. For Ee we obtained explicit conditions 
for its local stability, what is not obvious for a 
four–dimensional system. Besides Edf and Ee, 
there exists also the stationary state E1 for which 
the infection appears only in LS, what is desir-
able from the epidemiological point.

System (1), because of the mentioned proper-
ties appearing also in analogical continuous sys-
tems, can be exploited in cases when it is reason-
able to investigate the discrete nature of epidemic 
spread. What is important, System (1) does not 
include a step size of the discretization method, 
which appears in discrete systems built with 
discretization of their continuous counterpart. 
Thanks to that, there are no cases where some 
conditions, for example for stability of stationary 
states, depend on the step size.

To conclude, the model proposed and ana-
lyzed in this paper can be treated as an exemplary 
one for researchers investigating epidemic dy-
namics in heterogeneous populations. From the 
theoretical point, the obtained outcomes can be 
used for analyzing the systems of four discrete 
equations which are built from coupling two–di-
mensional discrete systems.
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