Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | R. 63, nr 4 | 3--9
Tytuł artykułu

Wpływ wybranych parametrów procesu zgrzewania tarciowego z mieszaniem na jakość złączy aluminiowych

Warianty tytułu
EN
Influence of friction stir welding parameters on aluminum joint quality
Języki publikacji
PL
Abstrakty
PL
Zgrzewanie tarciowe z mieszaniem (ang. friction stir welding) jest opatentowaną w latach 90. XX w. metodą łączenia blach, która umożliwia zgrzewanie elementów o różnych właściwościach i grubościach. Proces zgrzewania tarciowego z mieszaniem może być stosowany do zgrzewania materiałów, których łączenie klasycznymi metodami spawalniczymi jest trudne lub niemożliwe. Z powodzeniem zgrzewane są trudnospawalne lotnicze stopy aluminium z serii 2xxx i 7xxx. Przedmiotem analiz w niniejszym artykule jest określenie wpływu parametrów procesu liniowego zgrzewania z mieszeniem na jakość złączy wykonanych z blach aluminiowych. Badaniami objęto blachy z aluminium 7075 T6. Łączono blachy o grubościach 1,6 i 0,8 mm. Analizowano wpływ prędkości obrotowej, prędkości liniowej oraz sposobu mocowania próbek podczas statycznej próby rozciągania na nośność złączy. Przedstawiono makrostrukturę złączy, omówiono rodzaje wad i ich wpływ na nośność złączy.
EN
Friction Stir Welding (FSW) is a process invented in the 1990s that enables welding of the materials with different properties and thicknesses. Friction stir welding can be used for the materials that are poorly weldable or non-weldable by conventional fusion welding methods. Poorly weldable aluminum alloys of 2xxx and 7xxx series are easily joined by FSW technology. Determination of the influence of the FSW parameters on the quality of aluminum joints is the object of the work. The study includes 7075 T6 aluminum sheets. The sheets with thickness of 1.6 and 0.8 mm were joined. The influence of rotational speed, linear velocity and loading type during tensile tests on joint load capacity was analyzed. The macrostructure of the joints was presented. The typical defects and their impact on joint load capacity was described.
Wydawca

Rocznik
Strony
3--9
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
autor
  • Politechnika Częstochowska ul. J. H. Dąbrowskiego 69, 42-201 Częstochowa
Bibliografia
  • [1] Astarita Antonello, Pierpaolo Carlone, Gaetano S. Palazzo, Valentino Paradiso, Antonino Squillace. 2015. “Microstructural aspects in Al-Cu dissimilar joining by FSW". The International Journal of Advanced Manufacturing Technology 79: 1109-1116.
  • [2] Azarsa Ehsan, Amir Mostafapour. 2014. “Experimental investigation on flexural behaviour of friction stir welded high density polyethylene sheets". Journal of Manufacturing Processes 16: 149-155.
  • [3] Babu Sunkavalli Chinna, Kavery Elangovan, Visvalingam Balasubramanian, M. Balasubramanian. 2009. “Optimizing friction stir welding parameters to maximize tensile strength of AA2219 aluminum alloy joints". Metals and Materials International 15 (2): 321-330.
  • [4] Cavaliere Paolo, Riccardo Nobile, Francesco Panella, Antonio Squillace. 2006. “Mechanical and microstructural behaviour of 2024-7075 9 Rudy Metale 2018, R. 63, nr 4 aluminium alloy sheets joined by friction stir welding". International Journal of Machine Tools and Manufacture 46 (6): 588-594.
  • [5] Cavaliere Paolo, A. D. Santis, Francesco Panella., Antonio Squillace. 2009. "Effect of welding parameters on mechanical and microstructural properties of dissimilar AA6082-AA2024 joints produced by friction stir welding". Materials & Design 30 (3): 609-616.
  • [6] da Silva Antonio Augusto Monaco, Ekaitz Arruti, G. Janeiro, Egoitz Aldanondo, Pedro Alvarez, Alberto Echeverria. 2011. “Material flow and mechanical behaviour of dissimilar AA2024-T3 and AA- 7075-T6 aluminium alloys friction stir welds". Materials & Design 32: 2021-2027.
  • [7] Das Bipul, Sukhomay Pal, Swarup Bag. 2017. “Torque based defect detection and weld quality modelling in friction stir welding process". Journal of Manufacturing Processes 27: 8-17.
  • [8] Dilip John Samuel, M. Koilraj, V. Sundareswaran, G. D. Janaki Ram, Sajja Rama Koteswara Rao. 2010. “Microstructural characterization of dissimilar friction stir welds between AA2219 and AA5083". Transactions of the Indian Institute of Metals 63: 757-764.
  • [9] Entesari S., Amir Abdollah-zadeh, Niloufar Habibi, A. Mehri. 2017. “Experimental and numerical investigations into the failure mechanisms of friction stir welded AA7075-T6 thin sheets". Journal of Manufacturing Processes 29: 74-84.
  • [10] Eslami Shayan, Tiago Ramos, Paulo Tavares, Pedro Moreira. 2015. “Shoulder design developments for FSW lap joints of dissimilar polymers". Journal of Manufacturing Processes 20: 15-23.
  • [11] Giraud Landry, Hugo Robe, Christophe Claudin, Christophe Desrayaud, Philippe Bocher, Eric Feulvarch. 2016. “Investigation into the dissimilar friction stir welding of AA7020-T651and AA- 6060-T6". Journal of Materials Processing Technology 235: 220-230.
  • [12] Hajideh Mojtaba Rezaee, M. Farahani, Seyed Amir Davoud Alavi, Navid Molla Ramezani. 2017. “Investigation on the effects of tool geometry on the microstructure and the mechanical properties of dissimilar friction stir welded polyethylene and polypropylene sheets". Journal of Manufacturing Processes 2017 26: 269-279.
  • [13] Heirani Farzad, Alireza Abbasi, Mohammad Ardestani. 2017. “Effects of processing parameters on microstructure and mechanical behaviors of underwater friction stir welding of Al5083 alloy". Journal of Manufacturing Processes 25: 77-84.
  • [14] Khan Noor Zaman, Zahidakhtar Khan, Arshad Noor Siddiquee, Abdulrahman Mushabab A. Al-Ahmari, Mustufa Haider Abidi. 2017. “Analysis of defects in clean fabrication process of friction stir welding". Transactions of Nonferrous Metals Society of China 27: 1507-1516.
  • [15] Kumar Pravir Satish, Ch. S. R. Shastry, Aruri Devaraju. 2017. “Influence of tool revolving on mechanical properties of friction stir welded 5083 aluminum alloy". Materials Today: Proceedings 4: 330-335.
  • [16] Lacki Piotr, Anna Derlatka, Tomasz Gałaczyński. 2017. “Selection of basic position in Refill Friction Stir Spot Welding of 2024-T3 and D16UTW aluminum alloy sheets". Archives of Metallurgy and Materials 62 (1): 453-459.
  • [17] Lacki Piotr, Anna Derlatka. 2016. “Experimental and numerical investigation of aluminium lap joints made by RFSSW". Meccanica 51 (2): 455-462.
  • [18] Lacki Piotr, Anna Derlatka. 2017. “Strength evaluation of beam made of the aluminum 6061-T6 and titanium grade 5 alloys sheets joined by RFSSW and RSW". Composite Structures 159: 491-497.
  • [19] Lauro A. 2012. “Friction stir welding of titanium alloys". Journal Welding International 26 (1): 8-21.
  • [20] Lienert T. J., Stellwag, B. B. Grimmett, R. W. Warke. 2003. “Friction Stir Welding Studies on Mild Steel". Welding Journal 1: 1-9.
  • [21] Matsushita Muneo, Yasushi Kitani, Rinsei Ikeda. 2015. “Applicability of Friction Stir Welding (FSW) to Steels and Properties of the Welds." Jfe Technical Report 20: 133-140.
  • [22] Mubiayi Mukuna P., Esther T. Akinlabi. 2013. “Friction stir welding of dissimilar materials: an overview". International Journal of Mechanical 7: 232-238.
  • [23] Nathan S. R., Visvalingam Balasubramanian, Sudersenan Malarvizhi, A. G. Rao. 2016. “An investigation on metallurgical characteristics of tungsten based tool materials used in friction stir welding of naval grade high strength low alloy steels". International Journal of Refractory Metals and Hard Materials 56: 18-26.
  • [24] Paoletti Alfonso, Francesco Lambiase, Antoniomaria Di Ilio. 2015. “Optimization of friction stir welding of thermoplastics". Procedia CIRP 33: 562-567.
  • [25] Piyush Gulati, Dinesh Kumar Shukla, Akash Gupta. 2017. “Defect formation analysis of friction stir welded magnesium AZ31B alloy". Materials Today: Proceedings 4: 1005-1012.
  • [26] Pourali Masouhed, Amir Abdollah-zadeh, Tohid Saeid, Firouz Kargar. 2017. “Influence of welding parameters on intermetallic compounds formation in dissimilar steel/aluminum friction stir welds". Journal of Alloys and Compounds 715: 1-8.
  • [27] Robe Hugo, Yasser Zedan, Jianqiang Chen, Eric Feulvarch, Philippe Bocher. 2015. “Microstructural and mechanical characterization of a dissimilar friction stir welded butt joint made of AA2024-T3 and AA2198-T3". Materials Characterization 110: 242-251.
  • [28] Shirazi Hasan, S. Kheirandish S., Mohammad Ali Safarkhanian. 2015. “Effect of process parameters on the macrostructure and defect formation in friction stir lap welding of AA5456 aluminum alloy". Measurement 76: 62-69.
  • [29] Sudhagar S., M. Sakthivel, Price J. Mathew, Ajith Arul Daniel. 2017. "A multi criteria decision making approach for process improvement in friction stir welding of aluminium alloy". Measurement 108: 1-8.
  • [30] Vivek C. M., S. P. Manikandan, J. Kesavan. 2017. “A review on friction stir welding of titanium alloys". Indian Journal of Scientific Research 14 (1): 244-247.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-20ef5796-2def-4081-a191-b62853aa5f90
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.