Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 21, no. 3 | 235--254
Tytuł artykułu

Integrating Moisture Isotherms, Compatibility Assessment, and Model Propellant with ADN as an Eco-Friendly Oxidizer

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study delves into the use of ammonium dinitramide (ADN) as an eco-friendly substitute for ammonium perchlorate (AP) in solid rocket propellants. ADN based novel propellants were formulated with a nitrile butadiene rubber (NBR) based binder system. Employing Dynamic Vapor Sorption (DVS), ADN’s moisture characteristics were investigated at various temperatures (25, 35, 45 and 55°C) and utilized for propellant processing. Two component chemical compatibility assessments, in adherence to STANAG 4147 standard, were performed using Differential Scanning Calorimetry (DSC) and Vacuum Stability Testing (VST). Subsequently, propellant compositions containing ADN were formulated, and their performance was predicted using NASA’s CEC-71 code. The most promising formulation was processed and thereafter underwent testing for physical, ballistic, and mechanical performance against conventional AP-based propellants at a 500 g batch level. Optimal storage (≤ 25 °C, relative humidity (RH) ≤50%) and processing (35-40 °C, RH ≤35%) performance conditions were identified for ADN, contributing to the successful formulation of high-performance ADN/NBR propellant. The developed propellant showed marginal differences compared to AP/NBR in burn rate and density. However, compatibility issues with the bonding agent, hydantoin resin, led to deficiencies in mechanical strength. These findings contribute to the advancement of eco-friendly propellant technology, showcasing ADN’s potential as a transformative substance in aerospace applications.
Wydawca

Rocznik
Strony
235--254
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
  • High Energy Materials Research Laboratory (HEMRL), Pune – 411 021, India
  • High Energy Materials Research Laboratory (HEMRL), Pune – 411 021, India
  • High Energy Materials Research Laboratory (HEMRL), Pune – 411 021, India
  • High Energy Materials Research Laboratory (HEMRL), Pune – 411 021, India
  • High Energy Materials Research Laboratory (HEMRL), Pune – 411 021, India
Bibliografia
  • [1] Vernacchia, M.T.; Mathesius, K.J.; Hansman, R.J. Low-Thrust Solid Rocket Motors for Small, Fast Aircraft Propulsion: Design and Development. J. Propuls. Power 2022, 38(1): 122-134; https://doi.org/10.2514/1.B38104.
  • [2] Mason, B.P.; Roland, C.M. Solid Propellants. Rubber Chemistry and Technology 2019, 92(1): 1-24; https://doi.org/10.5254/rct.19.80456.
  • [3] Sutton, G.P.; Biblarz, O. Rocket Propulsion Elements. 9th ed., John Wiley & Sons, Inc., Hoboken, New Jersey, 2017.
  • [4] DeLuca, L.T. Chemical Rocket Propulsion. 1st ed., (DeLuca, L.T.; Shimada, T.; Sinditskii, V.P.; Calabro, M., Eds.) Springer Cham, 2017.
  • [5] Chaturvedi, S.; Dave, P.N. Solid Propellants: AP/HTPB Composite Propellants. Arabian J. Chem. 2019, 2061-2068; https://doi.org/10.1016/j.arabjc.2014.12.033.
  • [6] Aziz, A.; Mamat, R.; Ali, W.K. W.; Perang, M.R.M. Review on Typical Ingredients for Ammonium Perchlorate Based Solid Propellant. ARPN J. Eng. Appl. Sci. 2015, 10(15): 6188-6191; https://doi.org/10.4028/www.scientific.net/amm.773-774.470.
  • [7] Siglin, J.C.; Mattie, D.R.; Dodd, D.E.; Hildebrandt, P.K.; Baker, W.H. A 90-Day Drinking Water Toxicity Study in Rats of the Environmental Contaminant Ammonium Perchlorate. Toxicol. Sci. 2000, 57(1): 61-74; doi: 10.1093/toxsci/57.1.61.
  • [8] Perchlorate Environmental Occurrence, Interactions and Treatment. 1st ed., (Gu, B.; Coates, J.D., Eds.) Springer, New York, US-NY, 2006; https://doi.org/10.1007/0-387-31113-0.
  • [9] Maffini, M.V; Trasande, L.; Neltner, T. Perchlorate and Diet: Human Exposures, Risks, and Mitigation Strategies. Curr. Environ. Health Rep. 2016, 3(2): 107-117.https://doi.org/10.1007/s40572-016-0090-3.
  • [10] Niziński, P.; Błażewicz, A.; Kończyk, J.; Michalski, R. Perchlorate – Properties, Toxicity and Human Health Effects: An Updated Review. Reviews on Environmental Health 2021, 199-222; https://doi.org/10.1515/reveh-2020-0006.
  • [11] Li, M.; Xiao, M.; Xiao, Q.; Chen, Y.; Guo, Y.; Sun, J.; Li, R.; Li, C.; Zhu, Z.; Qiu, H.; Liu, X.; Lu, S. Perchlorate and Chlorate in Breast Milk, Infant Formulas, Baby Supplementary Food and the Implications for Infant Exposure. Environ. Int. 2022, 158: paper 106939. https://doi.org/https://doi.org/10.1016/j.envint.2021.106939.
  • [12] Medicine, P. Wildlife Toxicity Assessment for Perchlorate. Army Center for Health Promotion, Final Report, 2007.
  • [13] Perchlorate in Drinking-Water Background Document for Development of WHO Guidelines for Drinking-Water Quality. 2016; http://www.who.int/publications/guidelines/.
  • [14] Nagamachi, M.Y.; Oliveira, J.I.S.; Kawamoto, A.M.; de Cássia, L.; Dutra, R. ADN - The New Oxidizer around the Corner for an Environmentally Friendly Smokeless Propellant. J. Aerosp. Technol. Manage. 2009, 1(2): 153-160; https://doi.org/10.5028/jatm.2009.0102153160.
  • [15] Venkatachalam, S.; Santhosh, G.; Ninan, K.N. An Overview on the Synthetic Routes and Properties of Ammonium Dinitramide (ADN) and Other Dinitramide Salts. Propellants, Explos., Pyrotech. June 2004, 178-187. https://doi.org/10.1002/prep.200400043.
  • [16] Cannizzo, L.F.; Highsmith, T.K.; Wardle, R.B.; Campbell, C.J.; Dewey, M.A.; Bennett, R.R.; Lee, K.E.; Doll, D.W.; Mcleod, C.S.; Hajik, R.M.; Midyett, J.S. Utilizations of Ammonium Dinitramide (ADN) in Propellant Formulations*. 1998.
  • [17] Johansson; de Flon, J.; Pettersson, Å.; Wanhatalo, M.; Wingborg, N. Spray Prilling of ADN and Testing of ADN-Based Solid Propellants. Proc. 3rd Int. Conf. on Green Propellants for Space Propulsion, 2006.
  • [18] Chen, F.; Xuan, C.; Lu, Q.; Xiao, L.; Yang, J.; Hu, Y.; Zhang, G.P.; Wang, Y.; Zhao, F.; Hao, G.; Jiang, W. A Review on the High Energy Oxidizer Ammonium Dinitramide: Its Synthesis, Thermal Decomposition, Hygroscopicity, and Application in Energetic Materials. Def. Technol. 2023, 19: 163-195; https://doi.org/https://doi.org/10.1016/j.dt.2022.04.006.
  • [19] Cui, J.; Han, J.; Wang, J.; Huang, R. Study on the Crystal Structure and Hygroscopicity of Ammonium Dinitramide. J. Chem. Eng. Data 2010, 55(9): 3229-3234; https://doi.org/10.1021/je100067n.
  • [20] Santhosh, G.; Ghee Ang, H. Compatibility of Ammonium Dinitramide with Polymeric Binders Studied by Thermoanalytical Methods. Int. J. Energ. Mater. Chem. Propul. 2010, 9(1): 27-41.
  • [21] Iqbal, M.M.; Liang, W. Modeling the Moisture Effects of Solid Ingredients on Composite Propellant Properties. Aerosp. Sci. Technol. 2006, 10(8): 695-699; https://doi.org/https://doi.org/10.1016/j.ast.2006.07.003.
  • [22] Zeng, T.; Yang, R.; Li, D.; Li, J.; Guo, X.; Luo, P. Reactive Molecular Dynamics Study on the Effect of H2O on the Thermal Decomposition of Ammonium Dinitramide. Propellants Explos., Pyrotech. 2020, 45(10): 1590-1599; https://doi.org/10.1002/prep.201900309.
  • [23] Wingborg, N. Ammonium Dinitramide−Water: Interaction and Properties. J. Chem. Eng. Data 2006, 51(5): 1582-1586; https://doi.org/10.1021/je0600698.
  • [24] Marshall, P. V. A New Analytical Technique for Characterising the Water Vapour Sorption Properties of Powders. Proc. Int. Symp. on Solid Oral Dosage Forms, Stockholm, Sweden, 1994.
  • [25] Simón, C.; Fernández, F.G.; Esteban, L. G.; de Palacios, P.; Hosseinpourpia, R.; Mai, C. Comparison of the Saturated Salt and Dynamic Vapor Sorption Methods in Obtaining the Sorption Properties of Pinus Pinea L. Eur. J. Wood Wood Prod. 2017, 75: 919-926.
  • [26] Garbalińska, H. Comparative Analysis of the Dynamic Vapor Sorption (DVS) Technique and the Traditional Method for Sorption Isotherms Determination ‒ Exemplified at Autoclaved Aerated Concrete Samples of Four Density Classes. Cem. Concr. Res. 2017, 91: 97-105.
  • [27] Wang, J.N.; Zhang, G.; Yan, R.; Hu, L.; Zhang, T. Hygroscopicity of ADN with Dynamic Method. (in Chinese) 2012, 20(1): 86-89; https://doi.org/10.3969/j.issn.1006-9941.2012.01.021.
  • [28] Sheibani, N. Simulation and Experimental Study on the Incompatibility Issue between ADN and Isocyanate. J. Mol. Model 2022, 28(12) paper 405; https://doi.org/10.1007/s00894-022-05399-y.
  • [29] Sims, S.; Fischer, S.; Tagliabue, C. ADN Solid Propellants with High Burning Rates as Booster Material for Hypersonic Applications. Propellants Explos., Pyrotech. 2022, 47(7): https://doi.org/10.1002/prep.202200028.
  • [30] Gettwert, V.; Fischer, S. Small Scale Motor Tests of ADN/GAP Based Propellants.
  • [31] Gettwert, V.; Franzin, A.; Manfred, B.; DeLuca, L.; Heintz, T.; Weiser, V. ADN/GAP Composite Rocket Propellants with and Without Metallic Fuels. Int. J. Energ. Mater. Chem. Propul. 2018, 16; https://doi.org/10.1615/IntJEnergeticMaterialsChemProp.2018021254.
  • [32] Gribov, P.S.; Kondakova, N.N.; Il’icheva, N.N.; Stepanova, E.R.; Denisyuk, A.P.; Sizov, V.A.; Dotsenko, V.D.; Vinogradov, D.B.; Bulatov, P.V.; Sinditskii, V.P.; Suponitsky, K.Y.; Il’in, M.M.; Keshtov, M.L.; Sheremetev, A.B. Energetic Polymer Possessing Furazan, 1,2,3-Triazole, and Nitramine Subunits. Int. J. Mol. Sci. 2023, 24(11): https://doi.org/10.3390/ijms24119645.
  • [33] Klyuchnikov, O.R.; Deberdeev, R.Ya.; Zaikov, G.E. Low-Temperature Vulcanisation of Unsaturated Rubbers by C-Nitrose Systems. International Polymer Science and Technology 2006, 33(8): 51-56; https://doi.org/10.1177/0307174X0603300810.
  • [34] Singh, S.; Raveendran, S.; Kshirsagar, D.R.; Gupta, M.; Bhongale, C.J. Studies on Curing of an Aluminized Ammonium Perchlorate Composite Propellant Based on Nitrile Butadiene Rubber Using a Quinol Ether of 1,4-Benzoquinone Dioxime. Cent. Eur. J. Energ. Mater. 2022, 19(1): 18-38; https://doi.org/10.22211/cejem/147553.
  • [35] Chemical Compatibility of Ammunition Components with Explosives (Non Nuclear Applications). STANAG 4147 - Ed: 2, 2001.
  • [36] Agrawal, J.P. Salient Features of Explosives. In: High Energy Materials. 2010, pp. 1-67; https://doi.org/https://doi.org/10.1002/9783527628803.ch1.
  • [37] Gan, J.; Zhang, X.; Zhang, W.; Hang, R.; Xie, W.; Liu, Y.; Luo, W.; Chen, Y. Research Progress of Bonding Agents and Their Performance Evaluation Methods. Molecules 2022, 27(2) paper 340; https://doi.org/10.3390/molecules27020340
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-20ba0ac9-3ef2-4ba2-ba49-948bde956614
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.